On the volumes of linear subvarieties in moduli spaces of projectivized Abelian differentials

IF 1.3 2区 数学 Q1 MATHEMATICS
Duc-Manh Nguyen
{"title":"On the volumes of linear subvarieties in moduli spaces of projectivized Abelian differentials","authors":"Duc-Manh Nguyen","doi":"10.1007/s00208-024-02945-2","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\overline{{\\mathcal {H}}}_{g,n}\\)</span> denote the Hodge bundle over <span>\\(\\overline{{\\mathfrak {M}}}_{g,n}\\)</span>, and <span>\\({\\mathbb {P}}\\overline{{\\mathcal {H}}}_{g,n}\\)</span> its associated projective bundle. Let <span>\\({\\mathcal {H}}_{g,n}\\)</span> and <span>\\({\\mathbb {P}}{\\mathcal {H}}_{g,n}\\)</span> be respectively the restriction of <span>\\(\\overline{{\\mathcal {H}}}_{g,n}\\)</span> and <span>\\({\\mathbb {P}}\\overline{{\\mathcal {H}}}_{g,n}\\)</span> to the smooth part <span>\\({\\mathfrak {M}}_{g,n}\\)</span> of <span>\\(\\overline{{\\mathfrak {M}}}_{g,n}\\)</span>. The Hodge norm provides us with a Hermtian metric on <span>\\({\\mathscr {O}}(-1)_{{\\mathbb {P}}{\\mathcal {H}}_{g,n}}\\)</span>. Let <span>\\(\\Theta \\)</span> denote the curvature form of this metric. In this paper, we show that if <span>\\(\\overline{{\\mathcal {N}}}\\)</span> is a subvariety of <span>\\({\\mathbb {P}}\\overline{{\\mathcal {H}}}_{g,n}\\)</span> that intersects <span>\\({\\mathcal {H}}_{g,n}\\)</span>, then the integral of the top power of <span>\\(\\Theta \\)</span> over the smooth part of <span>\\(\\overline{{\\mathcal {N}}}\\cap {\\mathbb {P}}{\\mathcal {H}}_{g,n}\\)</span> equals the self-intersection number of the tautological divisor <span>\\(c_1({\\mathscr {O}}(-1)_{{\\mathbb {P}}\\overline{{\\mathcal {H}}}_{g,n}})\\cap \\overline{{\\mathcal {N}}}\\)</span> in <span>\\(\\overline{{\\mathcal {N}}}\\)</span>. This implies that the volume of a linear subvariety of <span>\\({\\mathbb {P}}{\\mathcal {H}}_{g,n}\\)</span> whose local coordinates do not involve relative periods can be computed by the intersection number of its closure in <span>\\({\\mathbb {P}}\\overline{{\\mathcal {H}}}_{g,n}\\)</span> with some power of any divisor representing the tautological line bundle. We also genralize this statement to the bundles <span>\\({\\mathbb {P}}\\overline{{\\mathcal {H}}}^{(k)}_{g,n}\\)</span>, <span>\\(k \\in {\\mathbb {Z}}_{\\ge 2}\\)</span>, of <i>k</i>-differentials with poles of order at most <span>\\((k-1)\\)</span> over <span>\\(\\overline{{\\mathfrak {M}}}_{g,n}\\)</span>. To obtain these results, we use the existence of an appropriate desingularization of <span>\\(\\overline{{\\mathcal {N}}}\\)</span> and a deep result of Kollár (Subadditivity of the Kodaira Dimension: Fiber of General Type, Algebraic Geometry, Sendai, 1985, Advanced studies in Pure Math. (1987)) on variation of Hodge structure.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"33 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02945-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\overline{{\mathcal {H}}}_{g,n}\) denote the Hodge bundle over \(\overline{{\mathfrak {M}}}_{g,n}\), and \({\mathbb {P}}\overline{{\mathcal {H}}}_{g,n}\) its associated projective bundle. Let \({\mathcal {H}}_{g,n}\) and \({\mathbb {P}}{\mathcal {H}}_{g,n}\) be respectively the restriction of \(\overline{{\mathcal {H}}}_{g,n}\) and \({\mathbb {P}}\overline{{\mathcal {H}}}_{g,n}\) to the smooth part \({\mathfrak {M}}_{g,n}\) of \(\overline{{\mathfrak {M}}}_{g,n}\). The Hodge norm provides us with a Hermtian metric on \({\mathscr {O}}(-1)_{{\mathbb {P}}{\mathcal {H}}_{g,n}}\). Let \(\Theta \) denote the curvature form of this metric. In this paper, we show that if \(\overline{{\mathcal {N}}}\) is a subvariety of \({\mathbb {P}}\overline{{\mathcal {H}}}_{g,n}\) that intersects \({\mathcal {H}}_{g,n}\), then the integral of the top power of \(\Theta \) over the smooth part of \(\overline{{\mathcal {N}}}\cap {\mathbb {P}}{\mathcal {H}}_{g,n}\) equals the self-intersection number of the tautological divisor \(c_1({\mathscr {O}}(-1)_{{\mathbb {P}}\overline{{\mathcal {H}}}_{g,n}})\cap \overline{{\mathcal {N}}}\) in \(\overline{{\mathcal {N}}}\). This implies that the volume of a linear subvariety of \({\mathbb {P}}{\mathcal {H}}_{g,n}\) whose local coordinates do not involve relative periods can be computed by the intersection number of its closure in \({\mathbb {P}}\overline{{\mathcal {H}}}_{g,n}\) with some power of any divisor representing the tautological line bundle. We also genralize this statement to the bundles \({\mathbb {P}}\overline{{\mathcal {H}}}^{(k)}_{g,n}\), \(k \in {\mathbb {Z}}_{\ge 2}\), of k-differentials with poles of order at most \((k-1)\) over \(\overline{{\mathfrak {M}}}_{g,n}\). To obtain these results, we use the existence of an appropriate desingularization of \(\overline{{\mathcal {N}}}\) and a deep result of Kollár (Subadditivity of the Kodaira Dimension: Fiber of General Type, Algebraic Geometry, Sendai, 1985, Advanced studies in Pure Math. (1987)) on variation of Hodge structure.

Abstract Image

论投影阿贝尔微分模空间中的线性子域的体积
让 \(\overline{{\mathcal {H}}}_{g,n}\) 表示在 \(\overline{{\mathfrak {M}}}_{g,n}\) 上的霍奇束,而 \({\mathbb {P}}overline{{\mathcal {H}}_{g,n}\) 表示其相关的投影束。让 \({\mathcal {H}}_{g,n}\) 和 \({\mathbb {P}}{\mathcal {H}}_{g,n}\) 分别是 \(\overline{\mathcal {H}}_{g、n}\) 和\({\mathbb {P}}\overline{{\mathcal {H}}}_{g,n}\) 对 \(\overline{{mathfrak {M}}_{g,n}\) 的光滑部分 \({\mathfrak {M}}_{g,n}\) 的限制。)霍奇规范为我们提供了一个关于 \({\mathscr {O}}(-1)_{{{mathbb {P}}{mathcal {H}}_{g,n}}\) 的赫尔姆特度量。让 \(\Theta \) 表示这个度量的曲率形式。在本文中,我们将证明如果 \(\overline{{\mathcal {N}}}\) 是 \({\mathbb {P}}\overline{{mathcal {H}}}_{g,n}\) 的子变量,与 \({\mathcal {H}}_{g、n}\) 的平滑部分上 \(overline{{\mathcal {N}}}\cap {mathbb {P}}{\mathcal {H}}_{g、n}\) 等于同调除数 \(c_1({\mathscr {O}}(-1)_{{\mathbb {P}}\overline{{\mathcal {H}}}_{g,n}})\cap \overline{{\mathcal {N}}}\) 的自交数。这意味着局部坐标不涉及相对周期的 \({\mathbb {P}}{mathcal {H}}_{g,n}\) 的线性子变量的体积可以通过它在\({\mathbb {P}}\overline\{mathcal {H}}_{g,n}\) 中的闭合与代表同调线束的任何除数的某个幂的交集数来计算。我们还将这一陈述归纳为({/mathbb {P}}\overline{{mathcal {H}}^{(k)}_{g,n}\), \(k \in {\mathbb {Z}}_{\ge 2}}\), \(\overline{{mathfrak {M}}}_{g,n}\) 上极点阶数最多为\((k-1)\)的 k 次微分的束。为了得到这些结果,我们使用了 \(\overline{{mathcal {N}}\) 的适当去奇化的存在性和科拉尔(Kollár)的一个深层结果(Kodaira Dimension 的 Subadditivity:Fiber of General Type, Algebraic Geometry, Sendai, 1985, Advanced studies in Pure Math. (1987)) 关于霍奇结构变化的深刻结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信