Theodoros Katsaounis, Ioanna Mousikou, Athanasios E. Tzavaras
{"title":"Axisymmetric Flows with Swirl for Euler and Navier–Stokes Equations","authors":"Theodoros Katsaounis, Ioanna Mousikou, Athanasios E. Tzavaras","doi":"10.1007/s00332-024-10064-0","DOIUrl":null,"url":null,"abstract":"<p>We consider the incompressible axisymmetric Navier–Stokes equations with swirl as an idealized model for tornado-like flows. Assuming an infinite vortex line which interacts with a boundary surface resembles the tornado core, we look for stationary self-similar solutions of the axisymmetric Euler and axisymmetric Navier–Stokes equations. We are particularly interested in the connection of the two problems in the zero-viscosity limit. First, we construct a class of explicit stationary self-similar solutions for the axisymmetric Euler equations. Second, we consider the possibility of discontinuous solutions and prove that there do not exist self-similar stationary Euler solutions with slip discontinuity. This nonexistence result is extended to a class of flows where there is mass input or mass loss through the vortex core. Third, we consider solutions of the Euler equations as zero-viscosity limits of solutions to Navier–Stokes. Using techniques from the theory of Riemann problems for conservation laws, we prove that, under certain assumptions, stationary self-similar solutions of the axisymmetric Navier–Stokes equations converge to stationary self-similar solutions of the axisymmetric Euler equations as <span>\\(\\nu \\rightarrow 0\\)</span>. This allows to characterize the type of Euler solutions that arise via viscosity limits.\n</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"48 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10064-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the incompressible axisymmetric Navier–Stokes equations with swirl as an idealized model for tornado-like flows. Assuming an infinite vortex line which interacts with a boundary surface resembles the tornado core, we look for stationary self-similar solutions of the axisymmetric Euler and axisymmetric Navier–Stokes equations. We are particularly interested in the connection of the two problems in the zero-viscosity limit. First, we construct a class of explicit stationary self-similar solutions for the axisymmetric Euler equations. Second, we consider the possibility of discontinuous solutions and prove that there do not exist self-similar stationary Euler solutions with slip discontinuity. This nonexistence result is extended to a class of flows where there is mass input or mass loss through the vortex core. Third, we consider solutions of the Euler equations as zero-viscosity limits of solutions to Navier–Stokes. Using techniques from the theory of Riemann problems for conservation laws, we prove that, under certain assumptions, stationary self-similar solutions of the axisymmetric Navier–Stokes equations converge to stationary self-similar solutions of the axisymmetric Euler equations as \(\nu \rightarrow 0\). This allows to characterize the type of Euler solutions that arise via viscosity limits.
期刊介绍:
The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be.
All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.