On finite groups in which the twisted conjugacy classes of the unit element are subgroups

IF 0.5 4区 数学 Q3 MATHEMATICS
Chiara Nicotera
{"title":"On finite groups in which the twisted conjugacy classes of the unit element are subgroups","authors":"Chiara Nicotera","doi":"10.1007/s00013-024-02025-6","DOIUrl":null,"url":null,"abstract":"<div><p>We consider groups <i>G</i> such that the set <span>\\([G,\\varphi ]=\\{g^{-1}g^{\\varphi }|g\\in G\\}\\)</span> is a subgroup for every automorphism <span>\\(\\varphi \\)</span> of <i>G</i>, and we prove that there exists such a group <i>G</i> that is finite and nilpotent of class <i>n</i> for every <span>\\(n\\in \\mathbb N\\)</span>. Then there exists an infinite not nilpotent group with the above property and the Conjecture 18.14 of Khukhro and Mazurov (The Kourovka Notebook No. 20, 2022) is false.\n</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-02025-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02025-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider groups G such that the set \([G,\varphi ]=\{g^{-1}g^{\varphi }|g\in G\}\) is a subgroup for every automorphism \(\varphi \) of G, and we prove that there exists such a group G that is finite and nilpotent of class n for every \(n\in \mathbb N\). Then there exists an infinite not nilpotent group with the above property and the Conjecture 18.14 of Khukhro and Mazurov (The Kourovka Notebook No. 20, 2022) is false.

关于单位元素的扭曲共轭类是子群的有限群
我们考虑这样的群 G,即集合 ([G,\varphi ]=\{g^{-1}g^{\varphi }|g\in G\}\)是 G 的每个自变形 \(\varphi \)的子群,并且我们证明存在这样一个群 G,它对于每个 \(n\in \mathbb N\) 都是有限的、n 类 n 的群。那么存在一个具有上述性质的无限非零能群,库赫罗和马祖洛夫的猜想 18.14(《库洛夫卡笔记》第 20 期,2022 年)是假的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信