The Nadler-Quinn problem on accessible points of arc-like continua

Andrea Ammerlaan, Ana Anušić, Logan C. Hoehn
{"title":"The Nadler-Quinn problem on accessible points of arc-like continua","authors":"Andrea Ammerlaan, Ana Anušić, Logan C. Hoehn","doi":"arxiv-2407.09677","DOIUrl":null,"url":null,"abstract":"We show that if $X$ is an arc-like continuum, then for every point $x \\in X$\nthere is a plane embedding of $X$ in which $x$ is an accessible point. This\nanswers a question posed by Nadler in 1972, which has become known as the\nNadler-Quinn problem in continuum theory. Towards this end, we develop the\ntheories of truncations and contour factorizations of interval maps. As a\ncorollary, we answer a question of Mayer from 1982 about inequivalent plane\nembeddings of indecomposable arc-like continua.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.09677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that if $X$ is an arc-like continuum, then for every point $x \in X$ there is a plane embedding of $X$ in which $x$ is an accessible point. This answers a question posed by Nadler in 1972, which has become known as the Nadler-Quinn problem in continuum theory. Towards this end, we develop the theories of truncations and contour factorizations of interval maps. As a corollary, we answer a question of Mayer from 1982 about inequivalent plane embeddings of indecomposable arc-like continua.
弧状连续体可达点上的纳德勒-奎因问题
我们证明,如果 $X$ 是弧状连续统,那么对于 X$ 中的每个点 $x \来说,都有一个 $X$ 的平面嵌入,其中 $x$ 是一个可访问点。这回答了纳德勒在 1972 年提出的一个问题,即连续统理论中的纳德勒-奎因问题。为此,我们发展了区间映射的截断和等值因子理论。作为必然结果,我们回答了迈尔在 1982 年提出的关于不可分解弧状连续体的不等价平面嵌入的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信