Electromagnetic Response Theory with Relativistic Corrections: Selfconsistency and Validity of Variables

Kikuo Cho
{"title":"Electromagnetic Response Theory with Relativistic Corrections: Selfconsistency and Validity of Variables","authors":"Kikuo Cho","doi":"arxiv-2407.09570","DOIUrl":null,"url":null,"abstract":"Schr\\\"odinger-Pauli equation (SP-eq) derived from weakly relativistic\napproximation (WRA) of Dirac eq, combined with Electromagnetic (EM) field\nLagrangian for variational principle, is expected to give a new level of EM\nresponse theory. A complete process of this formulation within the second order\nWRA is given, with explicit forms of charge and current densities, $\\rho ,\n\\vec{J}$, and electric and magnetic polarizations, $\\vec{P}$, $\\vec{M}$\ncontaining correction terms. They fulfill, not only the continuity equation,\nbut also the relations $\\nabla \\cdot \\vec{P}=-\\rho, \\ \\partial \\vec{P}/\\partial\nt + c \\nabla \\times \\vec{M} = \\vec{J}$, known in the classical EM theory for\nthe corresponding macroscopic variables. This theory should be able to describe\nall the EM responses within the second order WRA, and the least necessary\nvariables are ${\\phi, \\vec{A}, \\rho, \\vec{J}}$ (six independent components).\nFrom this viewpoint, there emerges a problem about the use of \"spin current\"\npopularly discussed in spintronics, because it does not belong to the group of\nleast necessary variables.","PeriodicalId":501482,"journal":{"name":"arXiv - PHYS - Classical Physics","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.09570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Schr\"odinger-Pauli equation (SP-eq) derived from weakly relativistic approximation (WRA) of Dirac eq, combined with Electromagnetic (EM) field Lagrangian for variational principle, is expected to give a new level of EM response theory. A complete process of this formulation within the second order WRA is given, with explicit forms of charge and current densities, $\rho , \vec{J}$, and electric and magnetic polarizations, $\vec{P}$, $\vec{M}$ containing correction terms. They fulfill, not only the continuity equation, but also the relations $\nabla \cdot \vec{P}=-\rho, \ \partial \vec{P}/\partial t + c \nabla \times \vec{M} = \vec{J}$, known in the classical EM theory for the corresponding macroscopic variables. This theory should be able to describe all the EM responses within the second order WRA, and the least necessary variables are ${\phi, \vec{A}, \rho, \vec{J}}$ (six independent components). From this viewpoint, there emerges a problem about the use of "spin current" popularly discussed in spintronics, because it does not belong to the group of least necessary variables.
电磁响应理论与相对论修正:变量的自洽性和有效性
从狄拉克方程的弱相对论近似(WRA)导出的薛定谔-保利方程(SP-eq),结合电磁场拉格朗日的变分原理,有望给出电磁响应理论的新水平。本文给出了二阶 WRA 中这一表述的完整过程,其中包括电荷和电流密度($\rho ,\vec{J}$)以及电极化和磁极化($\vec{P}$, $\vec{M}$)的显式修正项。它们不仅满足连续性方程,还满足$\nabla \cdot \vec{P}=-\rho, \partial \vec{P}/\partialt + c \nabla \times \vec{M} = \vec{J}$,这些关系在经典电磁理论中对于相应的宏观变量是已知的。这一理论应该能够描述二阶 WRA 内的所有电磁响应,而最小必要变量是 ${\phi,\vec{A},\rho,\vec{J}}$(六个独立分量)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信