Lambda-ring structures on the K-theory of algebraic stacks

Roy Joshua, Pablo Pelaez
{"title":"Lambda-ring structures on the K-theory of algebraic stacks","authors":"Roy Joshua, Pablo Pelaez","doi":"arxiv-2407.10394","DOIUrl":null,"url":null,"abstract":"In this paper we consider the K-theory of smooth algebraic stacks, establish\nlambda and gamma operations, and show that the higher K-theory of such stacks\nis always a pre-lambda-ring, and is a lambda-ring if every coherent sheaf is\nthe quotient of a vector bundle. As a consequence, we are able to define Adams\noperations and absolute cohomology for smooth algebraic stacks satisfying this\nhypothesis. We also obtain a comparison of the absolute cohomology with the\nequivariant higher Chow groups in certain special cases.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider the K-theory of smooth algebraic stacks, establish lambda and gamma operations, and show that the higher K-theory of such stacks is always a pre-lambda-ring, and is a lambda-ring if every coherent sheaf is the quotient of a vector bundle. As a consequence, we are able to define Adams operations and absolute cohomology for smooth algebraic stacks satisfying this hypothesis. We also obtain a comparison of the absolute cohomology with the equivariant higher Chow groups in certain special cases.
代数堆栈 K 理论上的 Lambda 环结构
在本文中,我们考虑了光滑代数栈的 K 理论,建立了兰姆达运算和伽马运算,并证明了这类栈的高 K 理论总是前兰姆达环,而且如果每个相干剪子都是向量束的商,那么高 K 理论就是兰姆达环。因此,我们能够为满足这一假设的光滑代数堆栈定义亚当斯迭代和绝对同调。我们还得到了在某些特殊情况下绝对同调与后向高周群的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信