{"title":"Upwind Bicompact Schemes for Hyperbolic Conservation Laws","authors":"M. D. Bragin","doi":"10.1134/S1064562424702089","DOIUrl":null,"url":null,"abstract":"<p>Upwind bicompact schemes of third-order approximation in space are presented for the first time. A formula is obtained for the transition factor of an arbitrary fully discrete bicompact scheme with Runge–Kutta time stepping. Stability and monotonicity of a scheme of first order in time are investigated, and the dissipative and dispersion properties of a scheme of third order in time are analyzed. Advantages of the new schemes over their centered counterparts are demonstrated.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424702089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Upwind bicompact schemes of third-order approximation in space are presented for the first time. A formula is obtained for the transition factor of an arbitrary fully discrete bicompact scheme with Runge–Kutta time stepping. Stability and monotonicity of a scheme of first order in time are investigated, and the dissipative and dispersion properties of a scheme of third order in time are analyzed. Advantages of the new schemes over their centered counterparts are demonstrated.