Optical soliton solutions for the Chavy-Waddy-Kolokolnikov model for bacterial colonies using two improved methods

IF 2.4 3区 数学 Q1 MATHEMATICS
Jamilu Sabi’u, Sekson Sirisubtawee, Mustafa Inc
{"title":"Optical soliton solutions for the Chavy-Waddy-Kolokolnikov model for bacterial colonies using two improved methods","authors":"Jamilu Sabi’u, Sekson Sirisubtawee, Mustafa Inc","doi":"10.1007/s12190-024-02169-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we use direct algebra and improved generalized Riccati equation methods to investigate optical soliton solutions to the Chavy-Waddy-Kolokolnikov model for bacterial colonies. The model is effective at phototaxis, which is the generation of bacterial aggregates that move toward the light. The model’s solitary wave solutions are obtained using the direct algebra and Ricatti equation methods, which take into account the minor perturbations of the linear case as well as the regimes of pattern generation and instability. For each case, we determined the dynamic of optical soliton solutions for the model, which includes hyperbolic, periodic soliton solutions for the linear case and stationary spike-like solutions for the nonlinear case. The methods produced several types of hyperbolic, periodic, and exponential solutions for this model that were not previously specified in the literature. We also presented the 2D and 3D graphs to show the kink, bright, and dark solitary wave structures with suitable numerical values. The obtained solutions will be of great importance in chemotaxis and phototaxis bacterial adaptations.</p>","PeriodicalId":15034,"journal":{"name":"Journal of Applied Mathematics and Computing","volume":"48 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02169-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we use direct algebra and improved generalized Riccati equation methods to investigate optical soliton solutions to the Chavy-Waddy-Kolokolnikov model for bacterial colonies. The model is effective at phototaxis, which is the generation of bacterial aggregates that move toward the light. The model’s solitary wave solutions are obtained using the direct algebra and Ricatti equation methods, which take into account the minor perturbations of the linear case as well as the regimes of pattern generation and instability. For each case, we determined the dynamic of optical soliton solutions for the model, which includes hyperbolic, periodic soliton solutions for the linear case and stationary spike-like solutions for the nonlinear case. The methods produced several types of hyperbolic, periodic, and exponential solutions for this model that were not previously specified in the literature. We also presented the 2D and 3D graphs to show the kink, bright, and dark solitary wave structures with suitable numerical values. The obtained solutions will be of great importance in chemotaxis and phototaxis bacterial adaptations.

Abstract Image

用两种改进方法解决细菌菌落的 Chavy-Waddy-Kolokolnikov 模型的光学孤子问题
在本文中,我们使用直接代数和改进的广义里卡提方程方法来研究细菌菌落的 Chavy-Waddy-Kolokolnikov 模型的光学孤子解。该模型对趋光性有效,即产生向光移动的细菌聚集体。我们使用直接代数和里卡提方程方法获得了该模型的孤波解,这些方法考虑到了线性情况下的微小扰动以及模式生成和不稳定状态。对于每种情况,我们都确定了模型的光学孤子解动态,其中包括线性情况下的双曲周期孤子解和非线性情况下的静止尖峰解。这些方法得出了该模型的几种双曲、周期和指数解,而这些解在以前的文献中并没有明确说明。我们还展示了二维和三维图形,以显示具有合适数值的扭结、明亮和黑暗孤波结构。所获得的解对细菌的趋化和趋光适应性具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Mathematics and Computing
Journal of Applied Mathematics and Computing Mathematics-Computational Mathematics
CiteScore
4.20
自引率
4.50%
发文量
131
期刊介绍: JAMC is a broad based journal covering all branches of computational or applied mathematics with special encouragement to researchers in theoretical computer science and mathematical computing. Major areas, such as numerical analysis, discrete optimization, linear and nonlinear programming, theory of computation, control theory, theory of algorithms, computational logic, applied combinatorics, coding theory, cryptograhics, fuzzy theory with applications, differential equations with applications are all included. A large variety of scientific problems also necessarily involve Algebra, Analysis, Geometry, Probability and Statistics and so on. The journal welcomes research papers in all branches of mathematics which have some bearing on the application to scientific problems, including papers in the areas of Actuarial Science, Mathematical Biology, Mathematical Economics and Finance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信