Chandra Choudhury, James E. Egleton, Neville J. Butcher, Angela J. Russell, Rodney F. Minchin
{"title":"Small Molecule Inhibitors of Arylamine N-Acetyltransferase 1 Attenuate Cellular Respiration","authors":"Chandra Choudhury, James E. Egleton, Neville J. Butcher, Angela J. Russell, Rodney F. Minchin","doi":"10.1021/acsptsci.4c00282","DOIUrl":null,"url":null,"abstract":"Arylamine N-acetyltransferase 1 (NAT1) expression has been shown to attenuate mitochondrial function, suggesting it is a promising drug target in diseases of mitochondrial dysfunction. Here, several second-generation naphthoquinones have been investigated as small molecule inhibitors of NAT1. The results show that the compounds inhibit both <i>in vitro</i> and in whole cells. A lead compound (Cmp350) was further investigated for its ability to alter mitochondrial metabolism in MDA-MB-231 cells. At concentrations that inhibited NAT1 by over 85%, no overt toxicity was observed. Moreover, the inhibitor decreased basal respiration and reserve respiratory capacity without affecting ATP production. Cells treated with Cmp350 were almost exclusively dependent on glucose as a fuel source. We postulate that Cmp350 is an excellent lead compound for the development of NAT1-targeted inhibitors as both experimental tools and therapeutics in the treatment of hypermetabolic diseases such as amyotrophic lateral sclerosis, cancer cachexia, and sepsis.","PeriodicalId":501473,"journal":{"name":"ACS Pharmacology & Translational Science","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology & Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsptsci.4c00282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Arylamine N-acetyltransferase 1 (NAT1) expression has been shown to attenuate mitochondrial function, suggesting it is a promising drug target in diseases of mitochondrial dysfunction. Here, several second-generation naphthoquinones have been investigated as small molecule inhibitors of NAT1. The results show that the compounds inhibit both in vitro and in whole cells. A lead compound (Cmp350) was further investigated for its ability to alter mitochondrial metabolism in MDA-MB-231 cells. At concentrations that inhibited NAT1 by over 85%, no overt toxicity was observed. Moreover, the inhibitor decreased basal respiration and reserve respiratory capacity without affecting ATP production. Cells treated with Cmp350 were almost exclusively dependent on glucose as a fuel source. We postulate that Cmp350 is an excellent lead compound for the development of NAT1-targeted inhibitors as both experimental tools and therapeutics in the treatment of hypermetabolic diseases such as amyotrophic lateral sclerosis, cancer cachexia, and sepsis.