Bridging Machine Learning and Thermodynamics for Accurate pKa Prediction

JACS Au Pub Date : 2024-07-17 DOI:10.1021/jacsau.4c00271
Weiliang Luo, Gengmo Zhou, Zhengdan Zhu, Yannan Yuan, Guolin Ke, Zhewei Wei, Zhifeng Gao, Hang Zheng
{"title":"Bridging Machine Learning and Thermodynamics for Accurate pKa Prediction","authors":"Weiliang Luo, Gengmo Zhou, Zhengdan Zhu, Yannan Yuan, Guolin Ke, Zhewei Wei, Zhifeng Gao, Hang Zheng","doi":"10.1021/jacsau.4c00271","DOIUrl":null,"url":null,"abstract":"Integrating scientific principles into machine learning models to enhance their predictive performance and generalizability is a central challenge in the development of AI for Science. Herein, we introduce Uni-p<i>K</i><sub>a</sub>, a novel framework that successfully incorporates thermodynamic principles into machine learning modeling, achieving high-precision predictions of acid dissociation constants (p<i>K</i><sub>a</sub>), a crucial task in the rational design of drugs and catalysts, as well as a modeling challenge in computational physical chemistry for small organic molecules. Uni-p<i>K</i><sub>a</sub> utilizes a comprehensive free energy model to represent molecular protonation equilibria accurately. It features a structure enumerator that reconstructs molecular configurations from p<i>K</i><sub>a</sub> data, coupled with a neural network that functions as a free energy predictor, ensuring high-throughput, data-driven prediction while preserving thermodynamic consistency. Employing a pretraining-finetuning strategy with both predicted and experimental p<i>K</i><sub>a</sub> data, Uni-p<i>K</i><sub>a</sub> not only achieves state-of-the-art accuracy in chemoinformatics but also shows comparable precision to quantum mechanics-based methods.","PeriodicalId":14799,"journal":{"name":"JACS Au","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c00271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating scientific principles into machine learning models to enhance their predictive performance and generalizability is a central challenge in the development of AI for Science. Herein, we introduce Uni-pKa, a novel framework that successfully incorporates thermodynamic principles into machine learning modeling, achieving high-precision predictions of acid dissociation constants (pKa), a crucial task in the rational design of drugs and catalysts, as well as a modeling challenge in computational physical chemistry for small organic molecules. Uni-pKa utilizes a comprehensive free energy model to represent molecular protonation equilibria accurately. It features a structure enumerator that reconstructs molecular configurations from pKa data, coupled with a neural network that functions as a free energy predictor, ensuring high-throughput, data-driven prediction while preserving thermodynamic consistency. Employing a pretraining-finetuning strategy with both predicted and experimental pKa data, Uni-pKa not only achieves state-of-the-art accuracy in chemoinformatics but also shows comparable precision to quantum mechanics-based methods.

Abstract Image

连接机器学习与热力学,实现精确 pKa 预测
将科学原理融入机器学习模型,以提高其预测性能和普适性,是人工智能促进科学发展的核心挑战。在本文中,我们介绍了Uni-pKa,这是一个新颖的框架,它成功地将热力学原理融入机器学习建模,实现了对酸解离常数(pKa)的高精度预测,这是药物和催化剂合理设计的一项关键任务,也是小有机分子计算物理化学的建模挑战。Uni-pKa 利用全面的自由能模型准确地表示分子质子化平衡。它具有一个结构枚举器,可根据 pKa 数据重建分子构型,并结合一个神经网络作为自由能预测器,确保在保持热力学一致性的同时进行高通量、数据驱动的预测。Uni-pKa 采用预测和实验 pKa 数据的预训练-微调策略,不仅达到了化学信息学领域最先进的精度,而且还显示出与基于量子力学的方法相当的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信