A Study on Strongly Lacunary Ward Continuity in 2-Normed Spaces

IF 0.6 4区 数学 Q3 MATHEMATICS
Sibel Ersan
{"title":"A Study on Strongly Lacunary Ward Continuity in 2-Normed Spaces","authors":"Sibel Ersan","doi":"10.1134/s0001434624050262","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> In this paper, we study the ideal strong lacunary ward compactness of a subset of a 2-normed space <span>\\(X\\)</span> and the ideal strongly lacunary ward continuity of a function <span>\\(f\\)</span> on <span>\\(X\\)</span>. Here a subset <span>\\(E\\)</span> of <span>\\(X\\)</span> is said to be ideal strong lacunary ward compact if any sequence in <span>\\(E\\)</span> has an ideal strong lacunary quasi-Cauchy subsequence. Additionally, a function on <span>\\(X\\)</span> is said to be ideal strong lacunary ward continuous if it preserves ideal strong lacunary quasi-Cauchy sequences; an ideal is defined to be a hereditary and additive family of subsets of <span>\\(\\mathbb{N}\\)</span>. We find that a subset <span>\\(E\\)</span> of <span>\\(X\\)</span> with a countable Hamel basis is totally bounded if and only if it is ideal strong lacunary ward compact. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624050262","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the ideal strong lacunary ward compactness of a subset of a 2-normed space \(X\) and the ideal strongly lacunary ward continuity of a function \(f\) on \(X\). Here a subset \(E\) of \(X\) is said to be ideal strong lacunary ward compact if any sequence in \(E\) has an ideal strong lacunary quasi-Cauchy subsequence. Additionally, a function on \(X\) is said to be ideal strong lacunary ward continuous if it preserves ideal strong lacunary quasi-Cauchy sequences; an ideal is defined to be a hereditary and additive family of subsets of \(\mathbb{N}\). We find that a subset \(E\) of \(X\) with a countable Hamel basis is totally bounded if and only if it is ideal strong lacunary ward compact.

关于 2 规范空间中强空白区连续性的研究
摘要 本文研究了2规范空间\(X\) 子集的理想强割裂紧凑性以及函数\(f\) 在\(X\) 上的理想强割裂连续性。这里,如果 \(E\) 中的任何序列都有一个理想的强疏松准考奇子序列,那么就可以说 \(X\) 的子集 \(E\) 是理想的强疏松紧凑的。此外,如果在 \(X\) 上的一个函数保留了理想的强缺陷准考奇序列,那么这个函数就被称为理想的强缺陷连续函数;理想的定义是 \(\mathbb{N}\) 子集的一个遗传的、可加的族。我们发现,具有可数哈梅尔基的\(X)的子集\(E\)是完全有界的(当且仅当它是理想的强拉克希准紧凑时)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信