On Shemetkov’s Question about the $$\mathfrak{F}$$ -Hypercenter

IF 0.6 4区 数学 Q3 MATHEMATICS
V. I. Murashka
{"title":"On Shemetkov’s Question about the $$\\mathfrak{F}$$ -Hypercenter","authors":"V. I. Murashka","doi":"10.1134/s0001434624050134","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> The chief factor <span>\\(H/K\\)</span> of a group <span>\\(G\\)</span> is said to be <span>\\(\\mathfrak{F}\\)</span>-central if </p><span>$$(H/K)\\rtimes (G/C_G(H/K))\\in\\mathfrak{F}.$$</span><p> The <span>\\(\\mathfrak{F}\\)</span>-hypercenter of a group <span>\\(G\\)</span> is defined to be a maximal normal subgroup of <span>\\(G\\)</span> such that all <span>\\(G\\)</span>-composition factors below it are <span>\\(\\mathfrak{F}\\)</span>-central in <span>\\(G\\)</span>. In 1995, at the Gomel algebraic seminar, L. A. Shemetkov formulated the problem of describing formations of finite groups <span>\\(\\mathfrak{F}\\)</span> for which, in any group, the intersection of <span>\\(\\mathfrak{F}\\)</span>-maximal subgroups coincides with the <span>\\(\\mathfrak{F}\\)</span>-hypercenter. In the present paper, new properties of such formations are obtained. In particular, a series of hereditary nonsaturated formations of soluble groups is constructed, which answer Shemetkov’s problem. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624050134","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The chief factor \(H/K\) of a group \(G\) is said to be \(\mathfrak{F}\)-central if

$$(H/K)\rtimes (G/C_G(H/K))\in\mathfrak{F}.$$

The \(\mathfrak{F}\)-hypercenter of a group \(G\) is defined to be a maximal normal subgroup of \(G\) such that all \(G\)-composition factors below it are \(\mathfrak{F}\)-central in \(G\). In 1995, at the Gomel algebraic seminar, L. A. Shemetkov formulated the problem of describing formations of finite groups \(\mathfrak{F}\) for which, in any group, the intersection of \(\mathfrak{F}\)-maximal subgroups coincides with the \(\mathfrak{F}\)-hypercenter. In the present paper, new properties of such formations are obtained. In particular, a series of hereditary nonsaturated formations of soluble groups is constructed, which answer Shemetkov’s problem.

关于谢梅特科夫提出的 $$\mathfrak{F}$ - 超中心问题
Abstract 如果 $$(H/K)\rtimes (G/C_G(H/K))\in\mathfrak{F}, 那么一个群 \(G\) 的主因子 \(H/K\) 被称作是 \(\mathfrak{F}\)-central 。$$ 一个群 \(G\) 的 \(\mathfrak{F}\)-hypercenter 被定义为 \(G\) 的一个最大正则子群,使得它下面的所有 \(G\) - 组合因子都是\(G\)中的\(\mathfrak{F}\)-中心。1995 年,在戈梅尔代数研讨会上,谢梅特科夫(L. A. Shemetkov)提出了描述有限群 \(\mathfrak{F}\)的形式的问题,对于这些有限群,在任何群中,\(\mathfrak{F}\)-最大子群的交集都与\(\mathfrak{F}\)-超中心重合。在本文中,我们得到了这种形式的新性质。特别是,本文构建了一系列可溶群的遗传非饱和形式,回答了谢梅特科夫的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信