{"title":"Periodic Solutions of the Euler–Bernoulli Quasilinear Vibration Equation for a Beam with an Elastically Fixed End","authors":"I. A. Rudakov","doi":"10.1134/s0001434624050158","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We consider the problem about time-periodic solutions of the quasilinear Euler–Bernoulli vibration equation for a beam subjected to tension along the horizontal axis. The boundary conditions correspond to the cases of elastically fixed, clamped, and hinged ends. The nonlinear term satisfies the nonresonance condition at infinity. Using the Schauder principle, we prove a theorem on the existence and uniqueness of a periodic solution. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":"29 3 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624050158","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the problem about time-periodic solutions of the quasilinear Euler–Bernoulli vibration equation for a beam subjected to tension along the horizontal axis. The boundary conditions correspond to the cases of elastically fixed, clamped, and hinged ends. The nonlinear term satisfies the nonresonance condition at infinity. Using the Schauder principle, we prove a theorem on the existence and uniqueness of a periodic solution.
期刊介绍:
Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.