On the Depth of a Multiplexer Function with a Small Number of Select Lines

IF 0.6 4区 数学 Q3 MATHEMATICS
S. A. Lozhkin
{"title":"On the Depth of a Multiplexer Function with a Small Number of Select Lines","authors":"S. A. Lozhkin","doi":"10.1134/s0001434624050092","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> This paper continues the research on the circuit synthesis problem for a multiplexer function of logic algebra, which is a component of many integrated circuits and is also used in theoretical study. The exact value of the depth of a multiplexer with <span>\\(n\\)</span> select lines in the standard basis is found under the assumption that the conjunction and disjunction gates are of depth 1 and the negation gate is of depth 0; the depth equals <span>\\(n+2\\)</span> if <span>\\(10 \\le n \\le 19\\)</span>. Thus, it follows from previous results that the exact depth value equals <span>\\(n+2\\)</span> for all positive integers <span>\\(n\\)</span> such that either <span>\\(2 \\le n \\le 5\\)</span> or <span>\\(n \\ge 10\\)</span>. Moreover, for <span>\\(n=1\\)</span>, this value equals 2, and for <span>\\(6 \\le n \\le 9\\)</span>, it equals either <span>\\(n+2\\)</span> or <span>\\(n+3\\)</span>. Similar results are also obtained for a basis consisting of all elementary conjunctions and elementary disjunctions of two variables. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":"16 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624050092","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper continues the research on the circuit synthesis problem for a multiplexer function of logic algebra, which is a component of many integrated circuits and is also used in theoretical study. The exact value of the depth of a multiplexer with \(n\) select lines in the standard basis is found under the assumption that the conjunction and disjunction gates are of depth 1 and the negation gate is of depth 0; the depth equals \(n+2\) if \(10 \le n \le 19\). Thus, it follows from previous results that the exact depth value equals \(n+2\) for all positive integers \(n\) such that either \(2 \le n \le 5\) or \(n \ge 10\). Moreover, for \(n=1\), this value equals 2, and for \(6 \le n \le 9\), it equals either \(n+2\) or \(n+3\). Similar results are also obtained for a basis consisting of all elementary conjunctions and elementary disjunctions of two variables.

关于具有少量选择行的多路复用器函数深度
摘要 本文继续研究逻辑代数的多路复用器函数的电路合成问题,多路复用器是许多集成电路的组成部分,也用于理论研究。在联结门和析取门的深度为 1,否定门的深度为 0 的假设下,求出了在标准基础上具有 \(n\) 条选择线的多路复用器深度的精确值;如果 \(10 \le n \le 19\) ,深度等于 \(n+2\)。因此,从前面的结果可以得出,对于所有正整数 \(n),要么是 \(2 \le n \le 5\) 要么是 \(n \ge 10\) ,精确深度值等于 \(n+2\)。此外,对于 (n=1),这个值等于 2,而对于 (6),它要么等于 (n+2),要么等于 (n+3)。对于由两个变量的所有基本连词和基本断词组成的基础,也可以得到类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信