Limitations of Affine Integer Relaxations for Solving Constraint Satisfaction Problems

Moritz Lichter, Benedikt Pago
{"title":"Limitations of Affine Integer Relaxations for Solving Constraint Satisfaction Problems","authors":"Moritz Lichter, Benedikt Pago","doi":"arxiv-2407.09097","DOIUrl":null,"url":null,"abstract":"We show that various known algorithms for finite-domain constraint\nsatisfaction problems (CSP), which are based on solving systems of linear\nequations over the integers, fail to solve all tractable CSPs correctly. The\nalgorithms include $\\mathbb{Z}$-affine $k$-consistency, BLP+AIP, every fixed\nlevel of the BA$^{k}$-hierarchy, and the CLAP algorithm. In particular, we\nrefute the conjecture by Dalmau and Opr\\v{s}al that there is a fixed constant\n$k$ such that the $\\mathbb{Z}$-affine $k$-consistency algorithm solves all\ntractable finite domain CSPs.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"17 5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.09097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that various known algorithms for finite-domain constraint satisfaction problems (CSP), which are based on solving systems of linear equations over the integers, fail to solve all tractable CSPs correctly. The algorithms include $\mathbb{Z}$-affine $k$-consistency, BLP+AIP, every fixed level of the BA$^{k}$-hierarchy, and the CLAP algorithm. In particular, we refute the conjecture by Dalmau and Opr\v{s}al that there is a fixed constant $k$ such that the $\mathbb{Z}$-affine $k$-consistency algorithm solves all tractable finite domain CSPs.
解决约束满足问题的仿射整数松弛的局限性
我们证明,基于求解整数线性方程组的有限域约束满足问题(CSP)的各种已知算法,都无法正确求解所有可行的 CSP。这些算法包括$\mathbb{Z}$-affine $k$-一致性算法、BLP+AIP算法、BA$^{k}$-层次结构的每个固定层次算法以及CLAP算法。特别是,我们验证了达尔莫和奥普尔的猜想,即存在一个固定常数$k$,使得$\mathbb{Z}$-affine $k$-一致性算法可以求解所有可求解的有限域 CSP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信