{"title":"Global boundedness and eventual regularity of chemotaxis-fluid model driven by porous medium diffusion","authors":"Chunhua Jin","doi":"10.4310/cms.2024.v22.n5.a1","DOIUrl":null,"url":null,"abstract":"The chemotaxis-fluid model was proposed by Goldstein et al. in 2005 to characterize the bacterial swimming phenomenon in incompressible fluid. For the three-dimensional case, the global existence of bounded solutions to chemotaxis(–Navier)–Stokes model has always been an open problem. Therefore, researchers have been led to seek alternative avenues by turning their attention to the model with slow diffusion ($\\Delta n^m$ with $m \\gt 1$). Even with slow diffusion, the problem is not easy to solve. In particular, the closer $m$ is to $1$, the more difficult the study becomes. In this paper, we put forward a new method to prove the global existence and boundedness of weak solutions for any $m \\gt 1$. The new method allows us to obtain higher regularity when $m$ is close to 1. Subsequently, we also prove that the weak solution converges to the constant equilibrium point $(\\overline n_0, 0, 0)$ in the sense of $L^\\infty$-norm for $1\\lt m \\leq \\frac{5}{3}$. Based on this, we prove that the weak solution becomes smooth after a certain time and eventually becomes a classical solution.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n5.a1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The chemotaxis-fluid model was proposed by Goldstein et al. in 2005 to characterize the bacterial swimming phenomenon in incompressible fluid. For the three-dimensional case, the global existence of bounded solutions to chemotaxis(–Navier)–Stokes model has always been an open problem. Therefore, researchers have been led to seek alternative avenues by turning their attention to the model with slow diffusion ($\Delta n^m$ with $m \gt 1$). Even with slow diffusion, the problem is not easy to solve. In particular, the closer $m$ is to $1$, the more difficult the study becomes. In this paper, we put forward a new method to prove the global existence and boundedness of weak solutions for any $m \gt 1$. The new method allows us to obtain higher regularity when $m$ is close to 1. Subsequently, we also prove that the weak solution converges to the constant equilibrium point $(\overline n_0, 0, 0)$ in the sense of $L^\infty$-norm for $1\lt m \leq \frac{5}{3}$. Based on this, we prove that the weak solution becomes smooth after a certain time and eventually becomes a classical solution.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.