Global existence and exponential stability of planar magnetohydrodynamics with temperature-dependent transport coefficients

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Ying Sun, Jianwen Zhang
{"title":"Global existence and exponential stability of planar magnetohydrodynamics with temperature-dependent transport coefficients","authors":"Ying Sun, Jianwen Zhang","doi":"10.4310/cms.2024.v22.n5.a4","DOIUrl":null,"url":null,"abstract":"This paper is concerned with an initial and boundary value problem for planar compressible magnetohydrodynamics with temperature-dependent transport coefficients. In the case when the viscosity $\\mu (\\theta) = \\lambda (\\theta) = \\theta^\\alpha$, the magnetic diffusivity $\\nu (\\theta ) = \\theta^\\alpha$ and the heat-conductivity $\\kappa (\\theta ) = \\theta^\\beta$ with $\\alpha ,\\beta \\in[0, \\infty)$, we prove the global existence of strong solution under some restrictions on the growth exponent $\\alpha$ and the initial norms. As a byproduct, the exponential stability of the solution is obtained. It is worth pointing out that the initial data could be large if $\\alpha \\geq 0$ is small, and the growth exponent of heat-conductivity $\\beta \\geq 0$ can be arbitrarily large.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"12 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n5.a4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with an initial and boundary value problem for planar compressible magnetohydrodynamics with temperature-dependent transport coefficients. In the case when the viscosity $\mu (\theta) = \lambda (\theta) = \theta^\alpha$, the magnetic diffusivity $\nu (\theta ) = \theta^\alpha$ and the heat-conductivity $\kappa (\theta ) = \theta^\beta$ with $\alpha ,\beta \in[0, \infty)$, we prove the global existence of strong solution under some restrictions on the growth exponent $\alpha$ and the initial norms. As a byproduct, the exponential stability of the solution is obtained. It is worth pointing out that the initial data could be large if $\alpha \geq 0$ is small, and the growth exponent of heat-conductivity $\beta \geq 0$ can be arbitrarily large.
具有温度相关传输系数的平面磁流体力学的全局存在性和指数稳定性
本文关注的是平面可压缩磁流体动力学的初始值和边界值问题,该问题的传输系数与温度有关。当粘度 $\mu (\theta) = \lambda (\theta) = \theta^\alpha$,磁扩散率 $\nu (\theta ) = \theta^\alpha$,热传导率 $\kappa (\theta ) = \theta^\beta$,且 $\alpha 、\beta \in[0, \infty)$,在对增长指数 $\alpha$ 和初始规范的一些限制下,我们证明了强解的全局存在性。作为副产品,我们得到了解的指数稳定性。值得指出的是,如果 $\alpha \geq 0$ 较小,初始数据可以很大,而热导率的增长指数 $\beta \geq 0$ 可以任意大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
59
审稿时长
6 months
期刊介绍: Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信