Nanoscale visualization of the anti-tumor effect of a plasma-activated Ringer’s lactate solution

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Junichi Usuda, Kenshin Yagyu, Hiromasa Tanaka, Masaru Hori, Kenji Ishikawa, Takahashi Yasufumi
{"title":"Nanoscale visualization of the anti-tumor effect of a plasma-activated Ringer’s lactate solution","authors":"Junichi Usuda, Kenshin Yagyu, Hiromasa Tanaka, Masaru Hori, Kenji Ishikawa, Takahashi Yasufumi","doi":"10.1039/d4fd00116h","DOIUrl":null,"url":null,"abstract":"Plasma-activated Ringer’s lactate solutions (PALs), which are Ringer’s lactate solutions treated with non-thermal atmospheric-pressure plasma, have anti-tumor effect and can be used for chemotherapy. As the anti-tumor effect of the PAL is influenced by the cell-treatment time, it is necessary to monitor the structural changes of the cell surface with non-invasive, nanoscale, and time-lapse imaging to understand the anti-tumor effect. In this study, to characterize the anti-tumor effect of the PAL, we used a scanning ion conductance microscopy (SICM), using glass nanopipettes as probes, to visualize the structural changes of the cell surface. SICM time-lapse topographic imaging visualized a decrease in the movement of lamellipodia in normal cells and cancer cells after the PAL treatment. Furthermore, in normal cells, protrusive structures were observed on the cell surface. Time-lapse imaging using SICM allowed us to characterize the differences in the morphological changes between the normal and cancer cells upon exposure to the PAL.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"106 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00116h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Plasma-activated Ringer’s lactate solutions (PALs), which are Ringer’s lactate solutions treated with non-thermal atmospheric-pressure plasma, have anti-tumor effect and can be used for chemotherapy. As the anti-tumor effect of the PAL is influenced by the cell-treatment time, it is necessary to monitor the structural changes of the cell surface with non-invasive, nanoscale, and time-lapse imaging to understand the anti-tumor effect. In this study, to characterize the anti-tumor effect of the PAL, we used a scanning ion conductance microscopy (SICM), using glass nanopipettes as probes, to visualize the structural changes of the cell surface. SICM time-lapse topographic imaging visualized a decrease in the movement of lamellipodia in normal cells and cancer cells after the PAL treatment. Furthermore, in normal cells, protrusive structures were observed on the cell surface. Time-lapse imaging using SICM allowed us to characterize the differences in the morphological changes between the normal and cancer cells upon exposure to the PAL.
等离子激活的林格乳酸盐溶液抗肿瘤效果的纳米级可视化
等离子体激活的林格氏乳酸盐溶液(PALs)是用非热大气压等离子体处理过的林格氏乳酸盐溶液,具有抗肿瘤作用,可用于化疗。由于 PAL 的抗肿瘤效果受细胞处理时间的影响,因此有必要利用无创、纳米级和延时成像技术监测细胞表面的结构变化,以了解其抗肿瘤效果。在本研究中,为了表征 PAL 的抗肿瘤效果,我们使用了扫描离子电导显微镜(SICM),以玻璃纳米吸头为探针,观察细胞表面的结构变化。SICM 延时地形图成像显示,PAL 处理后,正常细胞和癌细胞中的片状突起运动均有所减少。此外,在正常细胞中,还观察到细胞表面有突起结构。利用 SICM 的延时成像技术,我们得以描述正常细胞和癌细胞在接触 PAL 后形态变化的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信