A Numerical Comparison of Petri Net and Ordinary Differential Equation SIR Component Models

Trevor Reckell, Beckett Sterner, Petar Jevtić, Reggie Davidrajuh
{"title":"A Numerical Comparison of Petri Net and Ordinary Differential Equation SIR Component Models","authors":"Trevor Reckell, Beckett Sterner, Petar Jevtić, Reggie Davidrajuh","doi":"arxiv-2407.10019","DOIUrl":null,"url":null,"abstract":"Petri nets are a promising modeling framework for epidemiology, including the\nspread of disease across populations or within an individual. In particular,\nthe Susceptible-Infectious-Recovered (SIR) compartment model is foundational\nfor population epidemiological modeling and has been implemented in several\nprior Petri net studies. However, the SIR model is generally stated as a system\nof ordinary differential equations (ODEs) with continuous time and variables,\nwhile Petri nets are discrete event simulations. To our knowledge, no prior\nstudy has investigated the numerical equivalence of Petri net SIR models to the\nclassical ODE formulation. We introduce crucial numerical techniques for\nimplementing SIR models in the GPenSim package for Petri net simulations. We\nshow that these techniques are critical for Petri net SIR models and show a\nrelative root mean squared error of less than 1% compared to ODE simulations\nfor biologically relevant parameter ranges. We conclude that Petri nets provide\na valid framework for modeling SIR-type dynamics using biologically relevant\nparameter values provided that the other PN structures we outline are also\nimplemented.","PeriodicalId":501219,"journal":{"name":"arXiv - QuanBio - Other Quantitative Biology","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Other Quantitative Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Petri nets are a promising modeling framework for epidemiology, including the spread of disease across populations or within an individual. In particular, the Susceptible-Infectious-Recovered (SIR) compartment model is foundational for population epidemiological modeling and has been implemented in several prior Petri net studies. However, the SIR model is generally stated as a system of ordinary differential equations (ODEs) with continuous time and variables, while Petri nets are discrete event simulations. To our knowledge, no prior study has investigated the numerical equivalence of Petri net SIR models to the classical ODE formulation. We introduce crucial numerical techniques for implementing SIR models in the GPenSim package for Petri net simulations. We show that these techniques are critical for Petri net SIR models and show a relative root mean squared error of less than 1% compared to ODE simulations for biologically relevant parameter ranges. We conclude that Petri nets provide a valid framework for modeling SIR-type dynamics using biologically relevant parameter values provided that the other PN structures we outline are also implemented.
Petri 网和常微分方程 SIR 组件模型的数值比较
Petri 网是一种很有前途的流行病学建模框架,包括疾病在人群中或个体内部的传播。其中,易感-传染-复发(SIR)区隔模型是人群流行病学建模的基础,并已在之前的多项 Petri 网研究中得到应用。然而,SIR 模型通常是一个具有连续时间和变量的常微分方程(ODE)系统,而 Petri 网则是离散事件模拟。据我们所知,此前没有任何研究探讨过 Petri 网 SIR 模型与经典 ODE 表述的数值等价性。我们介绍了在用于 Petri 网仿真的 GPenSim 软件包中实现 SIR 模型的关键数值技术。结果表明,这些技术对于 Petri 网 SIR 模型至关重要,在生物相关参数范围内,与 ODE 模拟相比,它们的均方根误差小于 1%。我们的结论是,Petri 网为利用生物相关参数值模拟 SIR 型动力学提供了一个有效的框架,前提是我们概述的其他 PN 结构也得到了实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信