Rounding Error Using Low Precision Approximate Random Variables

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Michael B. Giles, Oliver Sheridan-Methven
{"title":"Rounding Error Using Low Precision Approximate Random Variables","authors":"Michael B. Giles, Oliver Sheridan-Methven","doi":"10.1137/23m1552814","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page B502-B526, August 2024. <br/> Abstract. For numerical approximations to stochastic differential equations using the Euler–Maruyama scheme, we propose incorporating approximate random variables computed using low precisions, such as single and half precision. We propose and justify a model for the rounding error incurred, and produce an average case error bound for two and four way differences, appropriate for regular and nested multilevel Monte Carlo estimations. Our rounding error model recovers and extends the statistical model by Arciniega and Allen [Stoch. Anal. Appl., 21 (2003), pp. 281–300], while bounding the size that systematic and biased rounding errors are permitted to be. By considering the variance structure of multilevel Monte Carlo correction terms in various precisions with and without a Kahan compensated summation, we compute the potential speed ups offered from the various precisions. We find single precision offers the potential for approximate speed improvements by a factor of 7 across a wide span of discretization levels. Half precision offers comparable improvements for several levels of coarse simulations, and even offers improvements by a factor of 10–12 for the very coarsest few levels, which are likely to dominate higher order methods such as the Milstein scheme.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1552814","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page B502-B526, August 2024.
Abstract. For numerical approximations to stochastic differential equations using the Euler–Maruyama scheme, we propose incorporating approximate random variables computed using low precisions, such as single and half precision. We propose and justify a model for the rounding error incurred, and produce an average case error bound for two and four way differences, appropriate for regular and nested multilevel Monte Carlo estimations. Our rounding error model recovers and extends the statistical model by Arciniega and Allen [Stoch. Anal. Appl., 21 (2003), pp. 281–300], while bounding the size that systematic and biased rounding errors are permitted to be. By considering the variance structure of multilevel Monte Carlo correction terms in various precisions with and without a Kahan compensated summation, we compute the potential speed ups offered from the various precisions. We find single precision offers the potential for approximate speed improvements by a factor of 7 across a wide span of discretization levels. Half precision offers comparable improvements for several levels of coarse simulations, and even offers improvements by a factor of 10–12 for the very coarsest few levels, which are likely to dominate higher order methods such as the Milstein scheme.
使用低精度近似随机变量的四舍五入误差
SIAM 科学计算期刊》,第 46 卷第 4 期,第 B502-B526 页,2024 年 8 月。 摘要。对于使用 Euler-Maruyama 方案对随机微分方程进行数值逼近,我们建议加入使用低精度(如单精度和半精度)计算的近似随机变量。我们提出了一个产生舍入误差的模型,并证明了其合理性。我们还提出了一个适用于常规和嵌套多级蒙特卡罗估计的双向和四向差分的平均误差约束。我们的舍入误差模型恢复并扩展了 Arciniega 和 Allen [Stoch.通过考虑多级蒙特卡洛修正项在不同精度下的方差结构,以及有无卡汉补偿求和,我们计算了不同精度可能带来的速度提升。我们发现,单精度可在广泛的离散化水平上将速度提高近似 7 倍。半精度为几级粗模拟提供了类似的改进,甚至为最粗的几级模拟提供了 10-12 倍的改进,而这几级模拟很可能在 Milstein 方案等高阶方法中占主导地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信