An Adaptive Factorized Nyström Preconditioner for Regularized Kernel Matrices

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shifan Zhao, Tianshi Xu, Hua Huang, Edmond Chow, Yuanzhe Xi
{"title":"An Adaptive Factorized Nyström Preconditioner for Regularized Kernel Matrices","authors":"Shifan Zhao, Tianshi Xu, Hua Huang, Edmond Chow, Yuanzhe Xi","doi":"10.1137/23m1565139","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2351-A2376, August 2024. <br/> Abstract. The spectrum of a kernel matrix significantly depends on the parameter values of the kernel function used to define the kernel matrix. This makes it challenging to design a preconditioner for a regularized kernel matrix that is robust across different parameter values. This paper proposes the adaptive factorized Nyström (AFN) preconditioner. The preconditioner is designed for the case where the rank [math] of the Nyström approximation is large, i.e., for kernel function parameters that lead to kernel matrices with eigenvalues that decay slowly. AFN deliberately chooses a well-conditioned submatrix to solve with and corrects a Nyström approximation with a factorized sparse approximate matrix inverse. This makes AFN efficient for kernel matrices with large numerical ranks. AFN also adaptively chooses the size of this submatrix to balance accuracy and cost. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/scalable-matrix/H2Pack/tree/AFN_precond and in the supplementary materials (H2Pack.zip [3.99MB]).","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1565139","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2351-A2376, August 2024.
Abstract. The spectrum of a kernel matrix significantly depends on the parameter values of the kernel function used to define the kernel matrix. This makes it challenging to design a preconditioner for a regularized kernel matrix that is robust across different parameter values. This paper proposes the adaptive factorized Nyström (AFN) preconditioner. The preconditioner is designed for the case where the rank [math] of the Nyström approximation is large, i.e., for kernel function parameters that lead to kernel matrices with eigenvalues that decay slowly. AFN deliberately chooses a well-conditioned submatrix to solve with and corrects a Nyström approximation with a factorized sparse approximate matrix inverse. This makes AFN efficient for kernel matrices with large numerical ranks. AFN also adaptively chooses the size of this submatrix to balance accuracy and cost. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/scalable-matrix/H2Pack/tree/AFN_precond and in the supplementary materials (H2Pack.zip [3.99MB]).
用于正则化核矩阵的自适应因子化 Nyström 预处理器
SIAM 科学计算期刊》,第 46 卷第 4 期,第 A2351-A2376 页,2024 年 8 月。 摘要核矩阵的频谱很大程度上取决于用于定义核矩阵的核函数的参数值。因此,为正则化核矩阵设计一个在不同参数值下都稳健的前置条件器具有挑战性。本文提出了自适应因子化 Nyström (AFN) 预处理器。该预处理器是针对 Nyström 近似的秩[math]较大的情况设计的,即针对核函数参数导致核矩阵特征值衰减缓慢的情况。AFN 会特意选择一个条件良好的子矩阵来求解,并用因式分解的稀疏近似矩阵逆来修正 Nyström 近似值。这使得 AFN 在求解数值级数较大的核矩阵时非常高效。AFN 还能自适应地选择子矩阵的大小,以平衡精度和成本。计算结果的可重复性。本文被授予 "SIAM 可重现徽章":代码和数据可用",以表彰作者遵循了 SISC 和科学计算界重视的可重现性原则。读者可通过 https://github.com/scalable-matrix/H2Pack/tree/AFN_precond 和补充材料(H2Pack.zip [3.99MB])中的代码和数据重现本文的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信