{"title":"Stable/unstable holonomies, density of periodic points, and transitivity for continuum-wise hyperbolic homeomorphisms","authors":"B Carvalho and E Rego","doi":"10.1088/1361-6544/ad6056","DOIUrl":null,"url":null,"abstract":"We discuss different regularities on stable/unstable holonomies of cw-hyperbolic homeomorphisms and prove that if a cw-hyperbolic homeomorphism has continuous joint stable/unstable holonomies, then it has a dense set of periodic points in its non-wandering set. For that, we prove that the hyperbolic cw-metric (introduced in Artigue et al (2024 J. Differ. Equ.378 512–38)) can be adapted to be self-similar (as in Artigue (2018 Ergodic Theory Dyn. Syst.38 2422–46)) and, in this case, continuous joint stable/unstable holonomies are pseudo-isometric. We also prove transitivity of cw-hyperbolic homeomorphisms assuming that the stable/unstable holonomies are isometric. In the case the ambient space is a surface, we prove that a cwF-hyperbolic homeomorphism has continuous joint stable/unstable holonomies when every bi-asymptotic sector is regular.","PeriodicalId":54715,"journal":{"name":"Nonlinearity","volume":"39 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinearity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6544/ad6056","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We discuss different regularities on stable/unstable holonomies of cw-hyperbolic homeomorphisms and prove that if a cw-hyperbolic homeomorphism has continuous joint stable/unstable holonomies, then it has a dense set of periodic points in its non-wandering set. For that, we prove that the hyperbolic cw-metric (introduced in Artigue et al (2024 J. Differ. Equ.378 512–38)) can be adapted to be self-similar (as in Artigue (2018 Ergodic Theory Dyn. Syst.38 2422–46)) and, in this case, continuous joint stable/unstable holonomies are pseudo-isometric. We also prove transitivity of cw-hyperbolic homeomorphisms assuming that the stable/unstable holonomies are isometric. In the case the ambient space is a surface, we prove that a cwF-hyperbolic homeomorphism has continuous joint stable/unstable holonomies when every bi-asymptotic sector is regular.
期刊介绍:
Aimed primarily at mathematicians and physicists interested in research on nonlinear phenomena, the journal''s coverage ranges from proofs of important theorems to papers presenting ideas, conjectures and numerical or physical experiments of significant physical and mathematical interest.
Subject coverage:
The journal publishes papers on nonlinear mathematics, mathematical physics, experimental physics, theoretical physics and other areas in the sciences where nonlinear phenomena are of fundamental importance. A more detailed indication is given by the subject interests of the Editorial Board members, which are listed in every issue of the journal.
Due to the broad scope of Nonlinearity, and in order to make all papers published in the journal accessible to its wide readership, authors are required to provide sufficient introductory material in their paper. This material should contain enough detail and background information to place their research into context and to make it understandable to scientists working on nonlinear phenomena.
Nonlinearity is a journal of the Institute of Physics and the London Mathematical Society.