A Finitely Convergent Circumcenter Method for the Convex Feasibility Problem

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Roger Behling, Yunier Bello-Cruz, Alfredo N. Iusem, Di Liu, Luiz-Rafael Santos
{"title":"A Finitely Convergent Circumcenter Method for the Convex Feasibility Problem","authors":"Roger Behling, Yunier Bello-Cruz, Alfredo N. Iusem, Di Liu, Luiz-Rafael Santos","doi":"10.1137/23m1595412","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2535-2556, September 2024. <br/> Abstract. In this paper, we present a variant of the circumcenter method for the convex feasibility problem (CFP), ensuring finite convergence under a Slater assumption. The method replaces exact projections onto the convex sets with projections onto separating half-spaces, perturbed by positive exogenous parameters that decrease to zero along the iterations. If the perturbation parameters decrease slowly enough, such as the terms of a diverging series, finite convergence is achieved. To the best of our knowledge, this is the first circumcenter method for CFP that guarantees finite convergence.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1595412","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Optimization, Volume 34, Issue 3, Page 2535-2556, September 2024.
Abstract. In this paper, we present a variant of the circumcenter method for the convex feasibility problem (CFP), ensuring finite convergence under a Slater assumption. The method replaces exact projections onto the convex sets with projections onto separating half-spaces, perturbed by positive exogenous parameters that decrease to zero along the iterations. If the perturbation parameters decrease slowly enough, such as the terms of a diverging series, finite convergence is achieved. To the best of our knowledge, this is the first circumcenter method for CFP that guarantees finite convergence.
凸可行性问题的有限收敛圆心法
SIAM 优化期刊》,第 34 卷第 3 期,第 2535-2556 页,2024 年 9 月。 摘要本文提出了凸可行性问题(CFP)圆周中心法的一种变体,在 Slater 假设下确保有限收敛。该方法用在分离半空间上的投影代替在凸集上的精确投影。如果扰动参数的下降速度足够慢,例如发散级数的项,就会实现有限收敛。据我们所知,这是第一种能保证有限收敛的 CFP 圆心方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信