Stability of Breathers for a Periodic Klein-Gordon Equation

Martina Chirilus-Bruckner, Jesús Cuevas-Maraver, Panayotis G. Kevrekidis
{"title":"Stability of Breathers for a Periodic Klein-Gordon Equation","authors":"Martina Chirilus-Bruckner, Jesús Cuevas-Maraver, Panayotis G. Kevrekidis","doi":"arxiv-2407.10766","DOIUrl":null,"url":null,"abstract":"The existence of breather type solutions, i.e., periodic in time,\nexponentially localized in space solutions, is a very unusual feature for\ncontinuum, nonlinear wave type equations. Following an earlier work [Comm.\nMath. Phys. {\\bf 302}, 815-841 (2011)], establishing a theorem for the\nexistence of such structures, we bring to bear a combination of\nanalysis-inspired numerical tools that permit the construction of such wave\nforms to a desired numerical accuracy. In addition, this enables us to explore\ntheir numerical stability. Our computations show that for the spatially\nheterogeneous form of the $\\phi^4$ model considered herein, the breather\nsolutions are generically found to be unstable. Their instability seems to\ngenerically favor the motion of the relevant structures. We expect that these\nresults may inspire further studies towards the identification of stable\ncontinuous breathers in spatially-heterogeneous, continuum nonlinear wave\nequation models.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The existence of breather type solutions, i.e., periodic in time, exponentially localized in space solutions, is a very unusual feature for continuum, nonlinear wave type equations. Following an earlier work [Comm. Math. Phys. {\bf 302}, 815-841 (2011)], establishing a theorem for the existence of such structures, we bring to bear a combination of analysis-inspired numerical tools that permit the construction of such wave forms to a desired numerical accuracy. In addition, this enables us to explore their numerical stability. Our computations show that for the spatially heterogeneous form of the $\phi^4$ model considered herein, the breather solutions are generically found to be unstable. Their instability seems to generically favor the motion of the relevant structures. We expect that these results may inspire further studies towards the identification of stable continuous breathers in spatially-heterogeneous, continuum nonlinear wave equation models.
周期性克莱因-戈登方程呼吸器的稳定性
对于连续非线性波型方程来说,呼吸器类型解(即时间上周期性、空间上指数局部化的解)的存在是一个非常不寻常的特征。继早先的工作[Comm.Math. Phys. {\bf 302}, 815-841 (2011)]建立了关于此类结构存在性的定理之后,我们将分析启发的数值工具结合在一起,允许以理想的数值精度构建此类波形。此外,这还使我们能够探索其数值稳定性。我们的计算表明,对于本文所考虑的空间异质形式的 $\phi^4$ 模型,呼吸解一般是不稳定的。它们的不稳定性似乎普遍有利于相关结构的运动。我们希望这些结果能激发进一步的研究,以确定空间均质连续非线性波方程模型中稳定连续的呼吸器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信