Mutations of noncommutative crepant resolutions in geometric invariant theory

Wahei Hara, Yuki Hirano
{"title":"Mutations of noncommutative crepant resolutions in geometric invariant theory","authors":"Wahei Hara, Yuki Hirano","doi":"10.1007/s00029-024-00957-z","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i> be a generic quasi-symmetric representation of a connected reductive group <i>G</i>. The GIT quotient stack <span>\\(\\mathfrak {X}=[X^\\text {ss}(\\ell )/G]\\)</span> with respect to a generic <span>\\(\\ell \\)</span> is a (stacky) crepant resolution of the affine quotient <i>X</i>/<i>G</i>, and it is derived equivalent to a noncommutative crepant resolution (=NCCR) of <i>X</i>/<i>G</i>. Halpern-Leistner and Sam showed that the derived category <span>\\({{\\textrm{D}}^{\\textrm{b}}}({\\text {coh}}\\mathfrak {X})\\)</span> is equivalent to certain subcategories of <span>\\({{\\textrm{D}}^{\\textrm{b}}}({\\text {coh}}[X/G])\\)</span>, which are called magic windows. This paper studies equivalences between magic windows that correspond to wall-crossings in a hyperplane arrangement in terms of NCCRs. We show that those equivalences coincide with derived equivalences between NCCRs induced by tilting modules, and that those tilting modules are obtained by certain operations of modules, which is called exchanges of modules. When <i>G</i> is a torus, it turns out that the exchanges are nothing but iterated Iyama–Wemyss mutations. Although we mainly discuss resolutions of affine varieties, our theorems also yield a result for projective Calabi-Yau varieties. Using techniques from the theory of noncommutative matrix factorizations, we show that Iyama–Wemyss mutations induce a group action of the fundamental group <span>\\(\\pi _1(\\mathbb {P}^1\\,\\backslash \\{0,1,\\infty \\})\\)</span> on the derived category of a Calabi-Yau complete intersection in a weighted projective space.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"7 Suppl 8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00957-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be a generic quasi-symmetric representation of a connected reductive group G. The GIT quotient stack \(\mathfrak {X}=[X^\text {ss}(\ell )/G]\) with respect to a generic \(\ell \) is a (stacky) crepant resolution of the affine quotient X/G, and it is derived equivalent to a noncommutative crepant resolution (=NCCR) of X/G. Halpern-Leistner and Sam showed that the derived category \({{\textrm{D}}^{\textrm{b}}}({\text {coh}}\mathfrak {X})\) is equivalent to certain subcategories of \({{\textrm{D}}^{\textrm{b}}}({\text {coh}}[X/G])\), which are called magic windows. This paper studies equivalences between magic windows that correspond to wall-crossings in a hyperplane arrangement in terms of NCCRs. We show that those equivalences coincide with derived equivalences between NCCRs induced by tilting modules, and that those tilting modules are obtained by certain operations of modules, which is called exchanges of modules. When G is a torus, it turns out that the exchanges are nothing but iterated Iyama–Wemyss mutations. Although we mainly discuss resolutions of affine varieties, our theorems also yield a result for projective Calabi-Yau varieties. Using techniques from the theory of noncommutative matrix factorizations, we show that Iyama–Wemyss mutations induce a group action of the fundamental group \(\pi _1(\mathbb {P}^1\,\backslash \{0,1,\infty \})\) on the derived category of a Calabi-Yau complete intersection in a weighted projective space.

Abstract Image

几何不变理论中的非交换褶皱决议的突变
让 X 是连通还原群 G 的一个泛型准对称表示。关于泛型 \(\ell \)的 GIT 商堆栈 \(\mathfrak {X}=[X^\text {ss}(\ell )/G]\) 是仿射商 X/G 的(堆叠)crepant 解析,它等价于 X/G 的非交换crepant 解析(=NCCR)。Halpern-Leistner 和 Sam 证明了派生类\({\textrm{D}}^{textrm{b}}}({\text {coh}}\mathfrak {X})\)等价于\({\textrm{D}}^{textrm{b}}}({\text {coh}}[X/G])\) 的某些子类,这些子类被称为魔窗。本文从 NCCR 的角度研究了与超平面排列中的壁交相对应的魔窗之间的等价关系。我们证明了这些等价关系与倾斜模块诱导的 NCCR 之间的派生等价关系重合,而且这些倾斜模块是通过模块的某些操作得到的,这些操作称为模块交换。当 G 是一个环时,结果表明这些交换只不过是迭代的 Iyama-Wemyss 突变。虽然我们主要讨论的是仿射变项的解析,但我们的定理也得出了射影卡拉比优变项的结果。利用非交换矩阵因式分解理论的技术,我们证明了 Iyama-Wemyss 突变在加权投影空间的 Calabi-Yau 完全交的派生类上诱发了基群 \(\pi _1(\mathbb {P}^1\,\backslash \{0,1,\infty \})\)的群作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信