Excision for Spaces of Admissible Skeins

Ingo Runkel, Christoph Schweigert, Ying Hong Tham
{"title":"Excision for Spaces of Admissible Skeins","authors":"Ingo Runkel, Christoph Schweigert, Ying Hong Tham","doi":"arxiv-2407.09302","DOIUrl":null,"url":null,"abstract":"The skein module for a d-dimensional manifold is a vector space spanned by\nembedded framed graphs decorated by a category A with suitable extra structure\ndepending on the dimension d, modulo local relations which hold inside d-balls.\nFor a full subcategory S of A, an S-admissible skein module is defined\nanalogously, except that local relations for a given ball may only be applied\nif outside the ball at least one edge is coloured in S. In this paper we prove that admissible skein modules in any dimension satisfy\nexcision, namely that the skein module of a glued manifold is expressed as a\ncoend over boundary values on the boundary components glued together. We\nfurthermore relate skein modules for different choices of S, apply our result\nto cylinder categories, and recover the relation to modified traces.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.09302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The skein module for a d-dimensional manifold is a vector space spanned by embedded framed graphs decorated by a category A with suitable extra structure depending on the dimension d, modulo local relations which hold inside d-balls. For a full subcategory S of A, an S-admissible skein module is defined analogously, except that local relations for a given ball may only be applied if outside the ball at least one edge is coloured in S. In this paper we prove that admissible skein modules in any dimension satisfy excision, namely that the skein module of a glued manifold is expressed as a coend over boundary values on the boundary components glued together. We furthermore relate skein modules for different choices of S, apply our result to cylinder categories, and recover the relation to modified traces.
对可接受的骨架空间进行切除
d 维流形的绺裂模块是一个向量空间,它由内嵌的框架图所跨越,框架图由一个类别 A 装饰,类别 A 具有适当的额外结构化,取决于维数 d,并模数化了在 d 球内部成立的局部关系。对于 A 的全子类 S,S-admissible skein 模块的定义与此类似,只是给定球的局部关系只有在球外至少有一条边在 S 中着色的情况下才适用。本文证明了任意维度的 admissible skein 模块满足苛刻条件,即粘合流形的 skein 模块表示为粘合在一起的边界成分上的边界值。我们进一步将不同 S 选择下的矢量模块联系起来,将我们的结果应用于圆柱范畴,并恢复了与修正迹线的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信