A manifestly Morita-invariant construction of Turaev-Viro invariants

Jürgen Fuchs, César Galindo, David Jaklitsch, Christoph Schweigert
{"title":"A manifestly Morita-invariant construction of Turaev-Viro invariants","authors":"Jürgen Fuchs, César Galindo, David Jaklitsch, Christoph Schweigert","doi":"arxiv-2407.10018","DOIUrl":null,"url":null,"abstract":"We present a state sum construction that assigns a scalar to a skeleton in a\nclosed oriented three-dimensional manifold. The input datum is the pivotal\nbicategory $\\mathbf{Mod}^{\\mathrm{sph}}(\\mathcal{A})$ of spherical module\ncategories over a spherical fusion category $\\mathcal{A}$. The interplay of algebraic structures in this pivotal bicategory with moves\nof skeleta ensures that our state sum is independent of the skeleton on the\nmanifold. We show that the bicategorical invariant recovers the value of the\nstandard Turaev-Viro invariant associated to $\\mathcal{A}$, thereby proving the\nindependence of the Turaev-Viro invariant under pivotal Morita equivalence\nwithout recurring to the Reshetikhin-Turaev construction. A key ingredient for the construction is the evaluation of graphs on the\nsphere with labels in $\\mathbf{Mod}^{\\mathrm{sph}}(\\mathcal{A})$ that we\ndevelop in this article. A central tool are Nakayama-twisted traces on pivotal\nbimodule categories which we study beyond semisimplicity.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a state sum construction that assigns a scalar to a skeleton in a closed oriented three-dimensional manifold. The input datum is the pivotal bicategory $\mathbf{Mod}^{\mathrm{sph}}(\mathcal{A})$ of spherical module categories over a spherical fusion category $\mathcal{A}$. The interplay of algebraic structures in this pivotal bicategory with moves of skeleta ensures that our state sum is independent of the skeleton on the manifold. We show that the bicategorical invariant recovers the value of the standard Turaev-Viro invariant associated to $\mathcal{A}$, thereby proving the independence of the Turaev-Viro invariant under pivotal Morita equivalence without recurring to the Reshetikhin-Turaev construction. A key ingredient for the construction is the evaluation of graphs on the sphere with labels in $\mathbf{Mod}^{\mathrm{sph}}(\mathcal{A})$ that we develop in this article. A central tool are Nakayama-twisted traces on pivotal bimodule categories which we study beyond semisimplicity.
图拉耶夫-维罗不变式的明显莫里塔不变构造
我们提出了一种状态总和构造,它可以为封闭定向三维流形中的骨架分配一个标量。输入数据是球形融合类别 $\mathcal{A}$ 上的球形模类的枢轴二分类 $\mathbf{Mod}^{mathrm{sph}}(\mathcal{A})$。这个关键二分类中的代数结构与骨架移动的相互作用,确保了我们的状态和与它们的骨架无关。我们证明,二分类不变量恢复了与 $\mathcal{A}$ 相关联的标准图拉耶夫-维罗不变量的值,从而证明了图拉耶夫-维罗不变量在枢轴莫里塔等价性下的独立性,而无需重复雷谢提金-图拉耶夫的构造。该构造的一个关键要素是本文所发展的$\mathbf{Mod}^{mathrm{sph}}(\mathcal{A})$中标注的球面上图的评估。本文的核心工具是中山扭曲踪迹(Nakayama-twisted traces on pivotalbimodule categories),我们对其进行了超越半简单性的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信