Accretion of Meteoric Organic Matter at the Surface of Mars and Potential Production of Methane by Ultraviolet Radiation

IF 3.8 Q2 ASTRONOMY & ASTROPHYSICS
Juan Diego Carrillo-Sánchez, John M. C. Plane, Diego Janches and Gerónimo L. Villanueva
{"title":"Accretion of Meteoric Organic Matter at the Surface of Mars and Potential Production of Methane by Ultraviolet Radiation","authors":"Juan Diego Carrillo-Sánchez, John M. C. Plane, Diego Janches and Gerónimo L. Villanueva","doi":"10.3847/psj/ad54c9","DOIUrl":null,"url":null,"abstract":"In this study, a comprehensive model of the meteoric organic cycle on Mars for the current geological period is developed, which characterizes the ablation of exogenous organic matter in the upper atmosphere, the accretion of intact carbon at the surface, and the potential production of methane by UV photolysis from the surface reservoir. The model accounts for both the latitudinal and seasonal variation of the meteoroids’ input from the most relevant populations in the inner solar system. A recent version of the University of Leeds Chemical Ablation Model, which includes a semiempirical model to describe the pyrolysis kinetics of the meteoric organic matter, is then combined with this meteoroid input function and a semiempirical model that quantifies the UV production of methane. The minimum and maximum accretion rates of organics are between 18 and 90 kg sol−1 at aphelion and 45–134 kg sol−1 at the first crossing of the ecliptic plane. The resulting mixing ratios of carbon, in the top 200 μm of the surface layer, range from 0.09–0.43 ppm at 20°N to 4.8–8.9 ppm around the south pole. To be consistent with the methane upper limit of 0.02 ppbv measured by the NOMAD instrument on the ExoMars Trace Gas Orbiter, the UV photolysis yields for methane production need to be around 3% assuming a meteoric carbon content in comets of 25.6 wt% and an atmospheric lifetime of methane of 329 Earth yr. Alternatively, a laboratory estimate of 20% for the methane production yield would require a lifetime of 60 Earth yr.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"49 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Planetary Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/psj/ad54c9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a comprehensive model of the meteoric organic cycle on Mars for the current geological period is developed, which characterizes the ablation of exogenous organic matter in the upper atmosphere, the accretion of intact carbon at the surface, and the potential production of methane by UV photolysis from the surface reservoir. The model accounts for both the latitudinal and seasonal variation of the meteoroids’ input from the most relevant populations in the inner solar system. A recent version of the University of Leeds Chemical Ablation Model, which includes a semiempirical model to describe the pyrolysis kinetics of the meteoric organic matter, is then combined with this meteoroid input function and a semiempirical model that quantifies the UV production of methane. The minimum and maximum accretion rates of organics are between 18 and 90 kg sol−1 at aphelion and 45–134 kg sol−1 at the first crossing of the ecliptic plane. The resulting mixing ratios of carbon, in the top 200 μm of the surface layer, range from 0.09–0.43 ppm at 20°N to 4.8–8.9 ppm around the south pole. To be consistent with the methane upper limit of 0.02 ppbv measured by the NOMAD instrument on the ExoMars Trace Gas Orbiter, the UV photolysis yields for methane production need to be around 3% assuming a meteoric carbon content in comets of 25.6 wt% and an atmospheric lifetime of methane of 329 Earth yr. Alternatively, a laboratory estimate of 20% for the methane production yield would require a lifetime of 60 Earth yr.
火星表面陨石有机物的沉积以及紫外线辐射产生甲烷的可能性
本研究建立了当前地质时期火星陨石有机物循环的综合模型,该模型描述了高层大气中外源有机物的消融、地表完整碳的增殖以及地表储层通过紫外线光解产生甲烷的可能性。该模型考虑了流星体从内太阳系最相关种群输入的纬度和季节变化。利兹大学最新版本的化学烧蚀模型包括一个描述流星有机物热解动力学的半经验模型,该模型与流星体输入函数和一个量化甲烷紫外线生成的半经验模型相结合。远日点有机物的最小和最大吸积率分别为 18 至 90 千克索尔-1,第一次穿越黄道面时为 45 至 134 千克索尔-1。由此得出的表层顶部 200 μm 处的碳混合比从北纬 20° 的 0.09-0.43 ppm 到南极附近的 4.8-8.9 ppm 不等。为了与 ExoMars 痕量气体轨道器上的 NOMAD 仪器测得的 0.02 ppbv 的甲烷上限保持一致,假设彗星中的陨石碳含量为 25.6 wt%,大气中甲烷的寿命为 329 地球年,则甲烷产生的紫外线光解产率约为 3%。或者,实验室估计甲烷生产率为 20%,则需要 60 地球年的寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Planetary Science Journal
The Planetary Science Journal Earth and Planetary Sciences-Geophysics
CiteScore
5.20
自引率
0.00%
发文量
249
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信