Operational 2-local automorphisms/derivations

Liguang Wang, Ngai-Ching Wong
{"title":"Operational 2-local automorphisms/derivations","authors":"Liguang Wang, Ngai-Ching Wong","doi":"arxiv-2407.10150","DOIUrl":null,"url":null,"abstract":"Let $\\phi: A\\to A$ be a (not necessarily linear, additive or continuous) map of a standard operator algebra. Suppose for any $a,b\\in A$ there is an\nalgebra automorphism $\\theta_{a,b}$ of $ A$ such that \\begin{align*}\n\\phi(a)\\phi(b) = \\theta_{a,b}(ab). \\end{align*} We show that either $\\phi$ or\n$-\\phi$ is a linear Jordan homomorphism. Similar results are obtained when any of the following conditions is\nsatisfied: \\begin{align*} \\phi(a) + \\phi(b) &= \\theta_{a,b}(a+b), \\\\\n\\phi(a)\\phi(b)+\\phi(b)\\phi(a) &= \\theta_{a,b}(ab+ba), \\quad\\text{or} \\\\\n\\phi(a)\\phi(b)\\phi(a) &= \\theta_{a,b}(aba). \\end{align*} We also show that a map $\\phi: M\\to M$ of a semi-finite von Neumann algebra $\nM$ is a linear derivation if for every $a,b\\in M$ there is a linear derivation\n$D_{a,b}$ of $M$ such that $$ \\phi(a)b + a\\phi(b) = D_{a,b}(ab). $$","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\phi: A\to A$ be a (not necessarily linear, additive or continuous) map of a standard operator algebra. Suppose for any $a,b\in A$ there is an algebra automorphism $\theta_{a,b}$ of $ A$ such that \begin{align*} \phi(a)\phi(b) = \theta_{a,b}(ab). \end{align*} We show that either $\phi$ or $-\phi$ is a linear Jordan homomorphism. Similar results are obtained when any of the following conditions is satisfied: \begin{align*} \phi(a) + \phi(b) &= \theta_{a,b}(a+b), \\ \phi(a)\phi(b)+\phi(b)\phi(a) &= \theta_{a,b}(ab+ba), \quad\text{or} \\ \phi(a)\phi(b)\phi(a) &= \theta_{a,b}(aba). \end{align*} We also show that a map $\phi: M\to M$ of a semi-finite von Neumann algebra $ M$ is a linear derivation if for every $a,b\in M$ there is a linear derivation $D_{a,b}$ of $M$ such that $$ \phi(a)b + a\phi(b) = D_{a,b}(ab). $$
操作性 2-局部自动形态/派生
让 $\phi:Ato A$ 是标准算子代数的映射(不一定是线性的、可加的或连续的)。假设对于 A$ 中的任意 $a,b\来说,$A$ 的代数自变量 $\theta_{a,b}$ 是这样的:\begin{align*}\phi(a)\phi(b) = \theta_{a,b}(ab)。\end{align*}我们证明 $\phi$ 或 $-\phi$ 都是线性的约旦同态。当满足以下任一条件时,也会得到类似的结果:\开始\phi(a) +\phi(b) &= \theta_{a,b}(a+b), \\phi(a)\phi(b)+\phi(b)\phi(a) &= \theta_{a,b}(ab+ba), \quad\text{or}\phi(a)\phi(b)\phi(a) &= \theta_{a,b}(aba).\end{align*}我们还证明了一个映射 $\phi:到 M$ 的映射是线性导数,如果 M$ 中的每个 $a,b 都有一个线性导数$D_{a,b}$,使得 $$ \phi(a)b + a\phi(b) = D_{a,b}(aba)。$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信