Asymptotic Properties of Extrema of Moving Sums of Independent Non-identically Distributed Variables

IF 0.8 Q3 STATISTICS & PROBABILITY
Narayanaswamy Balakrishnan, Alexei Stepanov
{"title":"Asymptotic Properties of Extrema of Moving Sums of Independent Non-identically Distributed Variables","authors":"Narayanaswamy Balakrishnan, Alexei Stepanov","doi":"10.3103/s1066530724700091","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this work, we discuss the asymptotic behavior of minima and maxima of moving sums of independent and non-identically distributed random variables. We first establish some theoretical results associated with the asymptotic behavior of minima and maxima. Then, we apply these results to exponential and normal models. We also derive strong limit results for the minima and maxima of moving sums taken from these two models.</p>","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"28 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066530724700091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we discuss the asymptotic behavior of minima and maxima of moving sums of independent and non-identically distributed random variables. We first establish some theoretical results associated with the asymptotic behavior of minima and maxima. Then, we apply these results to exponential and normal models. We also derive strong limit results for the minima and maxima of moving sums taken from these two models.

独立非同分布变量移动和的渐近特性
摘要 在这项工作中,我们讨论了独立和非同分布随机变量移动总和的最小值和最大值的渐近行为。我们首先建立了一些与最小值和最大值渐近行为相关的理论结果。然后,我们将这些结果应用于指数模型和正态模型。我们还推导出了这两个模型中移动和的最小值和最大值的强极限结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Methods of Statistics
Mathematical Methods of Statistics STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: Mathematical Methods of Statistics  is an is an international peer reviewed journal dedicated to the mathematical foundations of statistical theory. It primarily publishes research papers with complete proofs and, occasionally, review papers on particular problems of statistics. Papers dealing with applications of statistics are also published if they contain new theoretical developments to the underlying statistical methods. The journal provides an outlet for research in advanced statistical methodology and for studies where such methodology is effectively used or which stimulate its further development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信