{"title":"Magnetohydrodynamic instability of fluid flow in a bidisperse porous medium","authors":"Shahizlan Shakir Hajool, Akil J. Harfash","doi":"10.1007/s10665-024-10369-9","DOIUrl":null,"url":null,"abstract":"<p>The investigation focuses on the hydrodynamic instability of a fully developed pressure-driven flow within a bidisperse porous medium containing an electrically conducting fluid. The study explores this phenomenon using the Darcy theory for micropores and the Brinkman theory for macropores. The system involves an incompressible fluid under isothermal conditions confined in an infinite channel with a constant pressure gradient along its length. The fluid moves in a laminar fashion along the pressure gradient, resulting in a time-independent parabolic velocity profile. Two Chebyshev collocation techniques are employed to address the eigenvalue system, producing numerical results for evaluating instability. Our findings indicate that enhancing the values of the Hartmann numbers, permeability ratio, porous parameter, and interaction parameter contributes to an enhanced stability of the system. The spectral behavior of eigenvalues in the Orr-Sommerfeld problem for Poiseuille flow demonstrates noteworthy sensitivity, influenced by various factors, including the mathematical characteristics of the problem and the specific numerical techniques employed for approximation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10369-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The investigation focuses on the hydrodynamic instability of a fully developed pressure-driven flow within a bidisperse porous medium containing an electrically conducting fluid. The study explores this phenomenon using the Darcy theory for micropores and the Brinkman theory for macropores. The system involves an incompressible fluid under isothermal conditions confined in an infinite channel with a constant pressure gradient along its length. The fluid moves in a laminar fashion along the pressure gradient, resulting in a time-independent parabolic velocity profile. Two Chebyshev collocation techniques are employed to address the eigenvalue system, producing numerical results for evaluating instability. Our findings indicate that enhancing the values of the Hartmann numbers, permeability ratio, porous parameter, and interaction parameter contributes to an enhanced stability of the system. The spectral behavior of eigenvalues in the Orr-Sommerfeld problem for Poiseuille flow demonstrates noteworthy sensitivity, influenced by various factors, including the mathematical characteristics of the problem and the specific numerical techniques employed for approximation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.