{"title":"Magnetohydrodynamic instability of fluid flow in a bidisperse porous medium","authors":"Shahizlan Shakir Hajool, Akil J. Harfash","doi":"10.1007/s10665-024-10369-9","DOIUrl":null,"url":null,"abstract":"<p>The investigation focuses on the hydrodynamic instability of a fully developed pressure-driven flow within a bidisperse porous medium containing an electrically conducting fluid. The study explores this phenomenon using the Darcy theory for micropores and the Brinkman theory for macropores. The system involves an incompressible fluid under isothermal conditions confined in an infinite channel with a constant pressure gradient along its length. The fluid moves in a laminar fashion along the pressure gradient, resulting in a time-independent parabolic velocity profile. Two Chebyshev collocation techniques are employed to address the eigenvalue system, producing numerical results for evaluating instability. Our findings indicate that enhancing the values of the Hartmann numbers, permeability ratio, porous parameter, and interaction parameter contributes to an enhanced stability of the system. The spectral behavior of eigenvalues in the Orr-Sommerfeld problem for Poiseuille flow demonstrates noteworthy sensitivity, influenced by various factors, including the mathematical characteristics of the problem and the specific numerical techniques employed for approximation.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":"29 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10369-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The investigation focuses on the hydrodynamic instability of a fully developed pressure-driven flow within a bidisperse porous medium containing an electrically conducting fluid. The study explores this phenomenon using the Darcy theory for micropores and the Brinkman theory for macropores. The system involves an incompressible fluid under isothermal conditions confined in an infinite channel with a constant pressure gradient along its length. The fluid moves in a laminar fashion along the pressure gradient, resulting in a time-independent parabolic velocity profile. Two Chebyshev collocation techniques are employed to address the eigenvalue system, producing numerical results for evaluating instability. Our findings indicate that enhancing the values of the Hartmann numbers, permeability ratio, porous parameter, and interaction parameter contributes to an enhanced stability of the system. The spectral behavior of eigenvalues in the Orr-Sommerfeld problem for Poiseuille flow demonstrates noteworthy sensitivity, influenced by various factors, including the mathematical characteristics of the problem and the specific numerical techniques employed for approximation.
期刊介绍:
The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following:
• Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods.
• Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas.
The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly.
Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.