Development characteristics and controlling mechanism of different microfracture combinations in shale reservoir: A case study of Silurian Longmaxi Formation in Weiyuan area

Q1 Earth and Planetary Sciences
Yuexiang Hao , Lei Wu , Wei Jiang , Chao Qian , Xin Zhou , Yuanlin Wang
{"title":"Development characteristics and controlling mechanism of different microfracture combinations in shale reservoir: A case study of Silurian Longmaxi Formation in Weiyuan area","authors":"Yuexiang Hao ,&nbsp;Lei Wu ,&nbsp;Wei Jiang ,&nbsp;Chao Qian ,&nbsp;Xin Zhou ,&nbsp;Yuanlin Wang","doi":"10.1016/j.ptlrs.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>Fractures in organic-rich shale are important reservoir spaces and seepage channels of shale gas, and they are closely related to the gas-bearing properties of shale. The development characteristics and laws of fractures are of great significance in the exploration and development of shale oil and gas. This study examines organic-rich shales of the Wufeng–Longmaxi Formation in the Weiyuan area of the Sichuan Basin. On the basis of two-dimensional large-area multi-scale combination electron microscopy characterization and digital core platform technology, the development degree and distribution of different fractures are quantitatively characterized. The results show the following. (1) The shale of the Wufeng and Longmaxi formations developed a variety of fractures with different occurrences, sizes, and origins. According to the number and combination relationship between fractures of different occurrences, the shale can be divided into four fracture combination types: horizontal bedding fractures; vein fractures; reticular fractures; and ring fractures. Of these, the horizontal bedding fracture group has the largest number of samples and a higher average fracture surface porosity. (2) The degree of fracture development in the shale is affected by many factors, such as the laminar type, mineral composition, mineral particle size, mineral distribution, and total organic carbon, and the controlling mechanisms of different fracture combination types differ. Factors such as horizontal stratification, high clay mineral content, and uneven mineral particle size are conducive to the development of horizontal bedding joints. (3) Differences in the sedimentary environment affect the variation laws of the vertical fracture combination types and density. The total organic carbon and organic quartz content of the Long1<sub>1</sub><sup>1</sup> layer with deeper sedimentary water is higher, and the vein fracture formation is more developed than in other small layers, while the clay mineral content of the Long1<sub>1</sub><sup>2</sup> and Long1<sub>1</sub><sup>4</sup> layers with shallower sedimentary water is higher and the horizontal layer is more developed; the fracture combination type is dominated by the horizontal bedding fracture combination. At the same time, the fractures at the junction of each layer of the Long1<sub>1</sub> sub-member are the most developed because sea level rise and fall make the mineral particle size heterogeneity most prominent at the junction of the small layer.</div></div>","PeriodicalId":19756,"journal":{"name":"Petroleum Research","volume":"10 1","pages":"Pages 66-78"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Research","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096249524000632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Fractures in organic-rich shale are important reservoir spaces and seepage channels of shale gas, and they are closely related to the gas-bearing properties of shale. The development characteristics and laws of fractures are of great significance in the exploration and development of shale oil and gas. This study examines organic-rich shales of the Wufeng–Longmaxi Formation in the Weiyuan area of the Sichuan Basin. On the basis of two-dimensional large-area multi-scale combination electron microscopy characterization and digital core platform technology, the development degree and distribution of different fractures are quantitatively characterized. The results show the following. (1) The shale of the Wufeng and Longmaxi formations developed a variety of fractures with different occurrences, sizes, and origins. According to the number and combination relationship between fractures of different occurrences, the shale can be divided into four fracture combination types: horizontal bedding fractures; vein fractures; reticular fractures; and ring fractures. Of these, the horizontal bedding fracture group has the largest number of samples and a higher average fracture surface porosity. (2) The degree of fracture development in the shale is affected by many factors, such as the laminar type, mineral composition, mineral particle size, mineral distribution, and total organic carbon, and the controlling mechanisms of different fracture combination types differ. Factors such as horizontal stratification, high clay mineral content, and uneven mineral particle size are conducive to the development of horizontal bedding joints. (3) Differences in the sedimentary environment affect the variation laws of the vertical fracture combination types and density. The total organic carbon and organic quartz content of the Long111 layer with deeper sedimentary water is higher, and the vein fracture formation is more developed than in other small layers, while the clay mineral content of the Long112 and Long114 layers with shallower sedimentary water is higher and the horizontal layer is more developed; the fracture combination type is dominated by the horizontal bedding fracture combination. At the same time, the fractures at the junction of each layer of the Long11 sub-member are the most developed because sea level rise and fall make the mineral particle size heterogeneity most prominent at the junction of the small layer.
页岩储层中不同微裂缝组合的发育特征及控制机理:威远地区志留系龙马溪地层案例研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Petroleum Research
Petroleum Research Earth and Planetary Sciences-Geology
CiteScore
7.10
自引率
0.00%
发文量
90
审稿时长
35 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信