Fehmi Can Ozer , Hediye Tuydes-Yaman , Gulcin Dalkic-Melek
{"title":"Increasing the precision of public transit user activity location detection from smart card data analysis via spatial–temporal DBSCAN","authors":"Fehmi Can Ozer , Hediye Tuydes-Yaman , Gulcin Dalkic-Melek","doi":"10.1016/j.datak.2024.102343","DOIUrl":null,"url":null,"abstract":"<div><p>Smart Card (SC) systems have been increasingly adopted by public transit (PT) agencies all over the world, which facilitates not only fare collection but also PT service analyses and evaluations. Spatial clustering is one of the most important methods to investigate this big data in terms of activity locations, travel patterns, user behaviours, etc. Besides spatio-temporal analysis of the clusters provide further precision for detection of PT traveller activity locations and durations. This study focuses on investigation and comparison of the effectiveness of two density-based clustering algorithms, DBSCAN, and ST-DBSCAN. The numeric results are obtained using SC data (public bus system) from the metropolitan city of Konya, Turkey, and clustering algorithms are applied to a sample of this smart card data, and activity clusters are detected for the users. The results of the study suggested that ST-DBSCAN constitutes more compact clusters in both time and space for transportation researchers who want to accurately detect passengers’ individual activity regions using SC data.</p></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"153 ","pages":"Article 102343"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X24000673","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Smart Card (SC) systems have been increasingly adopted by public transit (PT) agencies all over the world, which facilitates not only fare collection but also PT service analyses and evaluations. Spatial clustering is one of the most important methods to investigate this big data in terms of activity locations, travel patterns, user behaviours, etc. Besides spatio-temporal analysis of the clusters provide further precision for detection of PT traveller activity locations and durations. This study focuses on investigation and comparison of the effectiveness of two density-based clustering algorithms, DBSCAN, and ST-DBSCAN. The numeric results are obtained using SC data (public bus system) from the metropolitan city of Konya, Turkey, and clustering algorithms are applied to a sample of this smart card data, and activity clusters are detected for the users. The results of the study suggested that ST-DBSCAN constitutes more compact clusters in both time and space for transportation researchers who want to accurately detect passengers’ individual activity regions using SC data.
期刊介绍:
Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.