{"title":"Optimizing physical quantities of ferrite hybrid nanofluid via response surface methodology: Sensitivity and spectral analyses","authors":"Sweta, RamReddy Chetteti, Pranitha Janapatla","doi":"10.1016/j.jocs.2024.102387","DOIUrl":null,"url":null,"abstract":"<div><p>This study analyses the sensitivity analysis of the friction factor and heat transfer rate within a hybrid nanoliquid flow of 20W40 motor oil (a base liquid that has been characterized by the Society of Automotive Engineers) + nickel zinc ferrite- manganese zinc ferrite over a stretchable sheet utilizing the Response Surface Methodology (RSM) along with irreversibility analysis. The melting phenomenon with buoyancy effect has been considered. Hybrid nanofluids exhibit improved thermal connectivity, enhanced mechanical resilience, favorable aspect ratios, and superior thermal conductivity when compared to conventional nanofluids. The system of governing equations is transformed into dimensionless form using the Lie group approach. Numerical computations are performed utilizing the spectral local linearization method. It is demonstrated that the Nusselt number and friction drag are decreased due to the increase of manganese and nickel zinc ferrites particles in the fluid. Further, the melting parameter reduces entropy generation by 41.16% and the viscous dissipation parameter minimizes surface friction. Sensitivity analysis, conducted through RSM, reveals that skin friction and the Nusselt number are positively sensitive to the melting parameter. The numerical solutions have been compared with the available results along with error estimations, which show excellent agreement. Comparison of both hybrid nanofluids are displayed graphically. Finally, this work has many uses such as microwave and biomedical applications, electromagnetic interfaces, melting, and welding operations which are the most significant manufacturing applications important in various sectors such as cooling systems of nuclear reactors.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"81 ","pages":"Article 102387"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324001807","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study analyses the sensitivity analysis of the friction factor and heat transfer rate within a hybrid nanoliquid flow of 20W40 motor oil (a base liquid that has been characterized by the Society of Automotive Engineers) + nickel zinc ferrite- manganese zinc ferrite over a stretchable sheet utilizing the Response Surface Methodology (RSM) along with irreversibility analysis. The melting phenomenon with buoyancy effect has been considered. Hybrid nanofluids exhibit improved thermal connectivity, enhanced mechanical resilience, favorable aspect ratios, and superior thermal conductivity when compared to conventional nanofluids. The system of governing equations is transformed into dimensionless form using the Lie group approach. Numerical computations are performed utilizing the spectral local linearization method. It is demonstrated that the Nusselt number and friction drag are decreased due to the increase of manganese and nickel zinc ferrites particles in the fluid. Further, the melting parameter reduces entropy generation by 41.16% and the viscous dissipation parameter minimizes surface friction. Sensitivity analysis, conducted through RSM, reveals that skin friction and the Nusselt number are positively sensitive to the melting parameter. The numerical solutions have been compared with the available results along with error estimations, which show excellent agreement. Comparison of both hybrid nanofluids are displayed graphically. Finally, this work has many uses such as microwave and biomedical applications, electromagnetic interfaces, melting, and welding operations which are the most significant manufacturing applications important in various sectors such as cooling systems of nuclear reactors.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).