Characterizing contrasimilarity through games, modal logic, and complexity

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Benjamin Bisping, Luisa Montanari
{"title":"Characterizing contrasimilarity through games, modal logic, and complexity","authors":"Benjamin Bisping,&nbsp;Luisa Montanari","doi":"10.1016/j.ic.2024.105191","DOIUrl":null,"url":null,"abstract":"<div><p>We present the first game characterization of contrasimilarity, the weakest form of bisimilarity. It corresponds to an elegant modal characterization of nested trees of impossible future behavior. The game is exponential but finite for finite-state systems and can thus be used for contrasimulation equivalence checking, of which no tool has been capable to date. By reduction from weak trace equivalence, we establish that contrasimilarity is PSPACE-complete. A machine-checked Isabelle/HOL formalization backs our work and enables further use of contrasimilarity in verification contexts.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"300 ","pages":"Article 105191"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890540124000567/pdfft?md5=5d349cca73dcbd929167de5c7c879b9e&pid=1-s2.0-S0890540124000567-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540124000567","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We present the first game characterization of contrasimilarity, the weakest form of bisimilarity. It corresponds to an elegant modal characterization of nested trees of impossible future behavior. The game is exponential but finite for finite-state systems and can thus be used for contrasimulation equivalence checking, of which no tool has been capable to date. By reduction from weak trace equivalence, we establish that contrasimilarity is PSPACE-complete. A machine-checked Isabelle/HOL formalization backs our work and enables further use of contrasimilarity in verification contexts.

通过游戏、模态逻辑和复杂性表征相似性
我们首次提出了反相似性(双相似性的最弱形式)的博弈特征。它对应于不可能的未来行为嵌套树的优雅模态表征。对于有限状态系统来说,该博弈是指数级的,但却是有限的,因此可用于等价性检查,而迄今为止还没有任何工具能够进行等价性检查。通过从弱迹线等价性还原,我们确定了等价性是 PSPACE-完全的。经过机器校验的 Isabelle/HOL 形式化支持我们的工作,使我们能够在验证环境中进一步使用相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信