Couplings of Brownian motions on SU(2) and SL(2,R)

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Magalie Bénéfice
{"title":"Couplings of Brownian motions on SU(2) and SL(2,R)","authors":"Magalie Bénéfice","doi":"10.1016/j.spa.2024.104434","DOIUrl":null,"url":null,"abstract":"<div><p>The Lie groups <span><math><mrow><mi>S</mi><mi>U</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>S</mi><mi>L</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> can be viewed as model spaces in subRiemannian geometry. Coupling two subelliptic Brownian motions on <span><math><mrow><mi>S</mi><mi>U</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> (resp. <span><math><mrow><mi>S</mi><mi>L</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>) consists in simultaneously coupling two Brownian motions on the sphere (resp. the hyperbolic plane) and their swept areas. Using this approach we propose an explicit construction of a co-adapted successful coupling on <span><math><mrow><mi>S</mi><mi>U</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>. The strategy is to alternate between reflection and synchronous (with noise) couplings on the sphere. We also describe some more general constructions of co-adapted couplings on <span><math><mrow><mi>S</mi><mi>U</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and on <span><math><mrow><mi>S</mi><mi>L</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"176 ","pages":"Article 104434"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924001406","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The Lie groups SU(2) and SL(2,R) can be viewed as model spaces in subRiemannian geometry. Coupling two subelliptic Brownian motions on SU(2) (resp. SL(2,R)) consists in simultaneously coupling two Brownian motions on the sphere (resp. the hyperbolic plane) and their swept areas. Using this approach we propose an explicit construction of a co-adapted successful coupling on SU(2). The strategy is to alternate between reflection and synchronous (with noise) couplings on the sphere. We also describe some more general constructions of co-adapted couplings on SU(2) and on SL(2,R).

SU(2) 上布朗运动的耦合和
列群 SU(2) 和 SL(2,R) 可被视为亚黎曼几何中的模型空间。在 SU(2) (或 SL(2,R))上耦合两个亚椭圆布朗运动,就是同时耦合球面(或双曲面)上的两个布朗运动及其扫掠区域。利用这种方法,我们提出了一种在 SU(2) 上共适应成功耦合的明确构造。我们的策略是交替使用球面上的反射耦合和同步耦合(带噪声)。我们还描述了苏(2)和SL(2,R)上共适配耦合的一些更一般的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信