{"title":"Integrated Multiphase-Flow Modeling Technique Yields Accurate Downhole Pressure Predictions","authors":"C. Carpenter","doi":"10.2118/0724-0074-jpt","DOIUrl":null,"url":null,"abstract":"\n \n This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 214855, “Integrated Multiphase-Flow Modeling for Downhole Pressure Predictions,” by Abdullah Alkhezzi and Yilin Fan, SPE, Colorado School of Mines. The paper has not been peer reviewed.\n \n \n \n This work presents an integrated multiphase flow model for downhole pressure predictions. The aim of the model is to produce more-accurate downhole pressure predictions under wide flowing conditions while maintaining a simple form. As a component of the integrated model, an improved two-fluid model for segregated flow is proposed. Results of the two-fluid segregated model are compared with five state-of-the-art existing models, while results of the integrated model are compared with three models.\n \n \n \n Throughout the life of the well, knowing bottomhole flowing pressure (Pwf) and the pressure profile of the wellbore are of great significance. Unfortunately, deploying downhole pressure gauges to obtain Pwfreadings is often not economical or practical. The common practice is to apply hydraulic models to predict Pwfgiven surface measurements. The prediction of such behavior is simple when dealing with single-phase fluid flow. Unfortunately, this condition is rare in the petroleum industry.\n The existence of multiple phases introduces multiple complexities hindering the accuracy of downhole pressure predictions. To account for such variations, fluid-property models must be integrated into the calculation procedure. The complexity, coupled with field-data scarcity, results in the deficiency of work that evaluates point models on actual wells.\n In this work, the authors evaluated the performance of a few widely used multiphase-flow point-based models on actual field data using a marching algorithm and developed a simplified, yet more precise, integrated model.\n \n \n \n Data Set Description.\n In this study, data points were collected for two main purposes. First, experimental data sets were collected to model and improve the segregated flow model. Second, field data were collected to test the integrated multiphase model. To improve the segregated flow model, 1,478 experimental data points were obtained from various sources in the literature.\n To evaluate the integrated multiphase flow model, 313 data points from two main sources of data were used (literature and actual field data). In total, four data sets were obtained from the literature and one was obtained from Civitas Resources.\n Integrated Model Description.\n The multiphase-flow point model incorporated in the authors’ integrated modeling consists of three main components: critical gas velocity estimation for the onset of liquid loading and hydraulic multiphase flow models before and after the onset of liquid loading. The proposed model characterizes the flow based on whether liquid loading occurs.\n The onset of liquid loading corresponds with the transition of the flow pattern from segregated to intermittent flow. At points where the superficial gas velocity is estimated to be lower than the critical gas velocity and the flow is considered intermittent or bubbly, the drift-flux model is to be used, which works well in flow patterns where liquid volume is high. Another strength of the model is its ability to capture countercurrent flow. The drift-flux homogeneous-like approach makes the process simple and continuous and simultaneously captures some physics through slippage. For points where the superficial gas velocity is greater than the critical gas velocity, two-fluid modeling is to be used.\n","PeriodicalId":16720,"journal":{"name":"Journal of Petroleum Technology","volume":"352 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/0724-0074-jpt","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 214855, “Integrated Multiphase-Flow Modeling for Downhole Pressure Predictions,” by Abdullah Alkhezzi and Yilin Fan, SPE, Colorado School of Mines. The paper has not been peer reviewed.
This work presents an integrated multiphase flow model for downhole pressure predictions. The aim of the model is to produce more-accurate downhole pressure predictions under wide flowing conditions while maintaining a simple form. As a component of the integrated model, an improved two-fluid model for segregated flow is proposed. Results of the two-fluid segregated model are compared with five state-of-the-art existing models, while results of the integrated model are compared with three models.
Throughout the life of the well, knowing bottomhole flowing pressure (Pwf) and the pressure profile of the wellbore are of great significance. Unfortunately, deploying downhole pressure gauges to obtain Pwfreadings is often not economical or practical. The common practice is to apply hydraulic models to predict Pwfgiven surface measurements. The prediction of such behavior is simple when dealing with single-phase fluid flow. Unfortunately, this condition is rare in the petroleum industry.
The existence of multiple phases introduces multiple complexities hindering the accuracy of downhole pressure predictions. To account for such variations, fluid-property models must be integrated into the calculation procedure. The complexity, coupled with field-data scarcity, results in the deficiency of work that evaluates point models on actual wells.
In this work, the authors evaluated the performance of a few widely used multiphase-flow point-based models on actual field data using a marching algorithm and developed a simplified, yet more precise, integrated model.
Data Set Description.
In this study, data points were collected for two main purposes. First, experimental data sets were collected to model and improve the segregated flow model. Second, field data were collected to test the integrated multiphase model. To improve the segregated flow model, 1,478 experimental data points were obtained from various sources in the literature.
To evaluate the integrated multiphase flow model, 313 data points from two main sources of data were used (literature and actual field data). In total, four data sets were obtained from the literature and one was obtained from Civitas Resources.
Integrated Model Description.
The multiphase-flow point model incorporated in the authors’ integrated modeling consists of three main components: critical gas velocity estimation for the onset of liquid loading and hydraulic multiphase flow models before and after the onset of liquid loading. The proposed model characterizes the flow based on whether liquid loading occurs.
The onset of liquid loading corresponds with the transition of the flow pattern from segregated to intermittent flow. At points where the superficial gas velocity is estimated to be lower than the critical gas velocity and the flow is considered intermittent or bubbly, the drift-flux model is to be used, which works well in flow patterns where liquid volume is high. Another strength of the model is its ability to capture countercurrent flow. The drift-flux homogeneous-like approach makes the process simple and continuous and simultaneously captures some physics through slippage. For points where the superficial gas velocity is greater than the critical gas velocity, two-fluid modeling is to be used.