V. Ganesan, P. S. Chee, Q. L. Goh, E. H. Lim, Y. J. King, L. H. Chong
{"title":"A self-powered spring-based triboelectric vibration sensor","authors":"V. Ganesan, P. S. Chee, Q. L. Goh, E. H. Lim, Y. J. King, L. H. Chong","doi":"10.1088/1755-1315/1372/1/012068","DOIUrl":null,"url":null,"abstract":"\n Self-powered vibration sensors have gained attention due to their versatility. However, a limitation of many existing self-powered sensors is their single-direction functionality, which hinders their effectiveness in capturing multidirectional human movement’s swinging motions. To address this, this study introduces an innovative self-powered vibration sensor based on the triboelectrification effect of an inverted pendulum metal ball. This novel sensor excels at detecting micro-vibrations through the freestanding sliding electrification of a metal ball using Kapton tape. The generated charge is transferred through interdigital electrodes arranged in a spiral pattern. To ensure adaptability to various motion types, the metal ball is affixed to a spring and configured as an inverted pendulum. This setup allows the sensor to detect both linear and rotary motions across a range of acceleration levels. The fabricated sensor exhibits remarkable sensitivity, measuring 0.203 V/mm. It was affixed to the human body to detect low-frequency vibrations, particularly those below 20 Hz. Impressively, it can detect millimeter-scale vibrations, even up to 3 mm, at different rotational angles (0°, 30°, 60°, and 90°). This outcome highlights the promising performance of our vibration sensor in the field of human motion monitoring, making it a significant advancement in the realm of self-powered vibration sensors.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"603 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Earth and Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1755-1315/1372/1/012068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Self-powered vibration sensors have gained attention due to their versatility. However, a limitation of many existing self-powered sensors is their single-direction functionality, which hinders their effectiveness in capturing multidirectional human movement’s swinging motions. To address this, this study introduces an innovative self-powered vibration sensor based on the triboelectrification effect of an inverted pendulum metal ball. This novel sensor excels at detecting micro-vibrations through the freestanding sliding electrification of a metal ball using Kapton tape. The generated charge is transferred through interdigital electrodes arranged in a spiral pattern. To ensure adaptability to various motion types, the metal ball is affixed to a spring and configured as an inverted pendulum. This setup allows the sensor to detect both linear and rotary motions across a range of acceleration levels. The fabricated sensor exhibits remarkable sensitivity, measuring 0.203 V/mm. It was affixed to the human body to detect low-frequency vibrations, particularly those below 20 Hz. Impressively, it can detect millimeter-scale vibrations, even up to 3 mm, at different rotational angles (0°, 30°, 60°, and 90°). This outcome highlights the promising performance of our vibration sensor in the field of human motion monitoring, making it a significant advancement in the realm of self-powered vibration sensors.