{"title":"Dynamic linkages between the monetary policy variables and stock market in the presence of structural breaks: evidence from India","authors":"Abdul Moizz, S.M. Jawed Akhtar","doi":"10.1108/ajeb-01-2024-0005","DOIUrl":null,"url":null,"abstract":"PurposeThe study aims to determine the long and short-term causal relationships between the variables associated with the adjustment of monetary policy and the stock market in India in the presence of structural breaks.Design/methodology/approachThe study employed the autoregressive distributed lag (ARDL) bounds test and the Error Correction Model to assess long- and short-term causal relationships. The study also used non-frequentist Bayesian inferences for the validity of estimation robustness. The Bai–Perron test is used to identify breakpoint dates for the Indian stock market index, and the Granger Causality test is employed to ascertain the direction of causality.FindingsThe F-bounds test reveals cointegration among the variables throughout the examined period. Specifically, the weighted average call money rate (WACR), inflation (WPI), currency exchange rate (EXE), and broad money supply (M3) exhibit statistical significance with precise signs. Furthermore, the study identifies the negative impact of the COVID-19 outbreak in March 2020 on the Indian stock market.Research limitations/implicationsAlthough the study provides significant insights, it is not exempt from constraints. A significant limitation is selecting a relatively limited time period, specifically from April 2008 to September 2023. The limited time frame of this study may restrict the applicability of the results to more comprehensive economic settings, as dynamics between the monetary policy and the stock market can be influenced by multiple factors over varying time periods. Furthermore, the utilisation of the Weighted Average Call Money Rate (WACR) rather than policy rates such as the Repo rate presents an additional constraint as it may not comprehensively account for the impacts of particular policy initiatives, thereby disregarding essential complexities in the connection between monetary policy variables and financial markets.Practical implicationsThe findings of the study suggest that investors and portfolio managers should consider economic issues while developing long-term investing plans. Reserve Bank of India should exercise prudence to prevent any discretionary measures that may lead to a rise in interest rates since this adversely affects the stock market. To mitigate risk, investors should closely monitor the adjustment of monetary policy variables.Social implicationsThe study has important social implications, especially regarding the lower levels of financial literacy among investors in India. Considering the complex nature of the study’s emphasis on monetary policy adjustments and their impact on the stock market. Investors face the risk of significant losses due to unexpected adjustments in monetary policy. Many individuals may need help understanding how policy changes impact their investments. Therefore, RBI must consider both price and financial stability when formulating monetary policies. Furthermore, market participants should consider the potential impact of fluctuating monetary policy variables when devising their long-term investment strategies. Given that adjustments in interest rates can markedly affect stock market dynamics, investors must carefully assess the implications of monetary policy decisions on their portfolios.Originality/valueThe study uses dummy variables in the ARDL model to represent structural breaks that emerged from the COVID-19 pandemic (as determined by the Bai–Perron multiple breakpoint test). The study also used the Perron unit root test to find out the stationary of the series in the presence of structural breaks. Additionally, the study also employed Bayesian inferences to affirm the robustness of the estimates.","PeriodicalId":504795,"journal":{"name":"Asian Journal of Economics and Banking","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Economics and Banking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ajeb-01-2024-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeThe study aims to determine the long and short-term causal relationships between the variables associated with the adjustment of monetary policy and the stock market in India in the presence of structural breaks.Design/methodology/approachThe study employed the autoregressive distributed lag (ARDL) bounds test and the Error Correction Model to assess long- and short-term causal relationships. The study also used non-frequentist Bayesian inferences for the validity of estimation robustness. The Bai–Perron test is used to identify breakpoint dates for the Indian stock market index, and the Granger Causality test is employed to ascertain the direction of causality.FindingsThe F-bounds test reveals cointegration among the variables throughout the examined period. Specifically, the weighted average call money rate (WACR), inflation (WPI), currency exchange rate (EXE), and broad money supply (M3) exhibit statistical significance with precise signs. Furthermore, the study identifies the negative impact of the COVID-19 outbreak in March 2020 on the Indian stock market.Research limitations/implicationsAlthough the study provides significant insights, it is not exempt from constraints. A significant limitation is selecting a relatively limited time period, specifically from April 2008 to September 2023. The limited time frame of this study may restrict the applicability of the results to more comprehensive economic settings, as dynamics between the monetary policy and the stock market can be influenced by multiple factors over varying time periods. Furthermore, the utilisation of the Weighted Average Call Money Rate (WACR) rather than policy rates such as the Repo rate presents an additional constraint as it may not comprehensively account for the impacts of particular policy initiatives, thereby disregarding essential complexities in the connection between monetary policy variables and financial markets.Practical implicationsThe findings of the study suggest that investors and portfolio managers should consider economic issues while developing long-term investing plans. Reserve Bank of India should exercise prudence to prevent any discretionary measures that may lead to a rise in interest rates since this adversely affects the stock market. To mitigate risk, investors should closely monitor the adjustment of monetary policy variables.Social implicationsThe study has important social implications, especially regarding the lower levels of financial literacy among investors in India. Considering the complex nature of the study’s emphasis on monetary policy adjustments and their impact on the stock market. Investors face the risk of significant losses due to unexpected adjustments in monetary policy. Many individuals may need help understanding how policy changes impact their investments. Therefore, RBI must consider both price and financial stability when formulating monetary policies. Furthermore, market participants should consider the potential impact of fluctuating monetary policy variables when devising their long-term investment strategies. Given that adjustments in interest rates can markedly affect stock market dynamics, investors must carefully assess the implications of monetary policy decisions on their portfolios.Originality/valueThe study uses dummy variables in the ARDL model to represent structural breaks that emerged from the COVID-19 pandemic (as determined by the Bai–Perron multiple breakpoint test). The study also used the Perron unit root test to find out the stationary of the series in the presence of structural breaks. Additionally, the study also employed Bayesian inferences to affirm the robustness of the estimates.