Comparing Single Vs. Hybrid models in Time Series Forecasting

مها توفيق, عبد الرحيم بسيوني
{"title":"Comparing Single Vs. Hybrid models in Time Series Forecasting","authors":"مها توفيق, عبد الرحيم بسيوني","doi":"10.21608/cfdj.2024.280231.1939","DOIUrl":null,"url":null,"abstract":": The research aims to forecast time series relying on individual models SVR, ARIMA, and the hybrid model \"ARIMA-SVR\" through different integration methods applied to global oil price data from January 2004 to December 2023, comprising monthly data with 240 observations and compare its results to identify the best model for forecasting global oil price. The integration methods include the additive hybrid model, the multiplicative hybrid, and the regression hybrid model as hybrid models comparing with single models SVR, and ARIMA models. The results showed that the additive hybrid model, ARIMA-SVR Additive is the best model among all models under studying, as it provides the lowest values of prediction accuracy metrics: MAE, MPE, MAPE, MSE. Using the Ljung-Box test for the resulting series it has the first ranking. The additive hybrid model, ARIMA-SVR Additive as the best model for modeling global oil price data is followed by the regression hybrid model, then the multiplicative hybrid model, SVR, and finally ARIMA.","PeriodicalId":176283,"journal":{"name":"المجلة العلمية للدراسات والبحوث المالية والتجارية","volume":"1976 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"المجلة العلمية للدراسات والبحوث المالية والتجارية","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/cfdj.2024.280231.1939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: The research aims to forecast time series relying on individual models SVR, ARIMA, and the hybrid model "ARIMA-SVR" through different integration methods applied to global oil price data from January 2004 to December 2023, comprising monthly data with 240 observations and compare its results to identify the best model for forecasting global oil price. The integration methods include the additive hybrid model, the multiplicative hybrid, and the regression hybrid model as hybrid models comparing with single models SVR, and ARIMA models. The results showed that the additive hybrid model, ARIMA-SVR Additive is the best model among all models under studying, as it provides the lowest values of prediction accuracy metrics: MAE, MPE, MAPE, MSE. Using the Ljung-Box test for the resulting series it has the first ranking. The additive hybrid model, ARIMA-SVR Additive as the best model for modeling global oil price data is followed by the regression hybrid model, then the multiplicative hybrid model, SVR, and finally ARIMA.
时间序列预测中单一模型与混合模型的比较时间序列预测中的混合模型
:本研究旨在通过不同的整合方法,对 2004 年 1 月至 2023 年 12 月全球石油价格数据(包括 240 个观测值的月度数据)中的 SVR、ARIMA 和 "ARIMA-SVR "混合模型进行预测,并比较其结果,以确定预测全球石油价格的最佳模型。整合方法包括作为混合模型的加法混合模型、乘法混合模型和回归混合模型,并与单一模型 SVR 和 ARIMA 模型进行比较。结果表明,加法混合模型 ARIMA-SVR Additive 是所研究的所有模型中最好的模型,因为它提供的预测精度指标值最低:MAE、MPE、MAPE、MSE。通过对结果序列进行 Ljung-Box 检验,该模型排名第一。加法混合模型 ARIMA-SVR 加法模型是全球石油价格数据建模的最佳模型,其次是回归混合模型,然后是乘法混合模型 SVR,最后是 ARIMA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信