Development and Application of a Multi-Objective Ant Colony Op-timization Method for Portfolio Problem

A. Panteleev, N.S. Popova
{"title":"Development and Application of a Multi-Objective Ant Colony Op-timization Method for Portfolio Problem","authors":"A. Panteleev, N.S. Popova","doi":"10.17759/mda.2024140205","DOIUrl":null,"url":null,"abstract":"A numerical method of multi-objective optimization is proposed for an approximate solution of the problem based on the generation of feasible solutions using the continuous ant colony method, non-dominated sorting and the epsilon-constraint technique. Solving a problem means finding the Pareto front. Solutions of typical model examples are given. The applied problem of optimizing an investment portfolio has been solved, in which the initial data are the tabulated average returns and covariance of stocks.","PeriodicalId":186451,"journal":{"name":"Моделирование и анализ данных","volume":"2006 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Моделирование и анализ данных","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17759/mda.2024140205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A numerical method of multi-objective optimization is proposed for an approximate solution of the problem based on the generation of feasible solutions using the continuous ant colony method, non-dominated sorting and the epsilon-constraint technique. Solving a problem means finding the Pareto front. Solutions of typical model examples are given. The applied problem of optimizing an investment portfolio has been solved, in which the initial data are the tabulated average returns and covariance of stocks.
针对投资组合问题的多目标蚁群优化方法的开发与应用
在利用连续蚁群法、非支配排序和ε约束技术生成可行解的基础上,提出了一种多目标优化的数值方法,用于近似解决该问题。解决问题意味着找到帕累托前沿。文中给出了典型模型实例的解决方案。已解决了优化投资组合的应用问题,其中初始数据是表列的股票平均收益和协方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信