{"title":"Assessing the Utility of Uncrewed Aerial System Photogrammetrically Derived Point Clouds for Land Cover Classification in the Alaska North Slope","authors":"Jung-Kuan Liu, Rongjun Qin, Samantha T. Arundel","doi":"10.14358/pers.24-00016r1","DOIUrl":null,"url":null,"abstract":"Uncrewed aerial systems (UASs) have been used to collect “pseudo field plot” data in the form of large-scale stereo imagery to supplement and bolster direct field observations to monitor areas in Alaska. These data supplement field data that is difficult to collect in such\n a vast landscape with a relatively short field season. Dense photogrammetrically derived point clouds are created and are facilitated to extract land cover data using a support vector machine (SVM) classifier in this study. We test our approach using point clouds derived from 1-cm stereo imagery\n of plots in the Alaska North Slope region and compare the results to field observations. The results show that the overall accuracy of six land cover classes (bare soil, shrub, grass, forb/herb, rock, and litter) is 96.8% from classified patches. Shrub had the highest accuracy (>99%)\n and forb/herb achieved the lowest (<48%). This study reveals that the approach could be used as reference data to check field observations in remote areas.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.24-00016r1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Uncrewed aerial systems (UASs) have been used to collect “pseudo field plot” data in the form of large-scale stereo imagery to supplement and bolster direct field observations to monitor areas in Alaska. These data supplement field data that is difficult to collect in such
a vast landscape with a relatively short field season. Dense photogrammetrically derived point clouds are created and are facilitated to extract land cover data using a support vector machine (SVM) classifier in this study. We test our approach using point clouds derived from 1-cm stereo imagery
of plots in the Alaska North Slope region and compare the results to field observations. The results show that the overall accuracy of six land cover classes (bare soil, shrub, grass, forb/herb, rock, and litter) is 96.8% from classified patches. Shrub had the highest accuracy (>99%)
and forb/herb achieved the lowest (<48%). This study reveals that the approach could be used as reference data to check field observations in remote areas.