Automating cloud virtual machines allocation via machine learning

Q2 Mathematics
F. Kamoun-Abid, Hounaida Frikha, Amel Meddeb-Makhoulf, F. Zarai
{"title":"Automating cloud virtual machines allocation via machine learning","authors":"F. Kamoun-Abid, Hounaida Frikha, Amel Meddeb-Makhoulf, F. Zarai","doi":"10.11591/ijeecs.v35.i1.pp191-202","DOIUrl":null,"url":null,"abstract":"In the realm of healthcare applications leveraging cloud technology, ongoing progress is evident, yet current approaches are rigid and fail to adapt to the dynamic environment, particularly when network and virtual machine (VM) resources undergo modifications mid-execution. Health data is stored and processed in the cloud as virtual resources supported by numerous VMs, necessitating critical optimization of virtual node and data placement to enhance data application processing time. Network security poses a significant challenge in the cloud due to the dynamic nature of the topology, hindering traditional firewalls’ ability to inspect packet contents and leaving the network vulnerable to potential threats. To address this, we propose dividing the cloud topology into zones, each monitored by a controller to oversee individual VMs under firewall protection, a framework termed divided-cloud, aiming to minimize network congestion while strategically placing new VMs. Employing machine learning (ML) techniques, such as decision tree (DT) and linear discriminant analysis (LDA), we achieved improved accuracy rates for adding new controllers, reaching a maximum of 89%, and used the K-neighbours classifier method to determine optimal locations for new VMs, achieving an accuracy of 83%.","PeriodicalId":13480,"journal":{"name":"Indonesian Journal of Electrical Engineering and Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijeecs.v35.i1.pp191-202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of healthcare applications leveraging cloud technology, ongoing progress is evident, yet current approaches are rigid and fail to adapt to the dynamic environment, particularly when network and virtual machine (VM) resources undergo modifications mid-execution. Health data is stored and processed in the cloud as virtual resources supported by numerous VMs, necessitating critical optimization of virtual node and data placement to enhance data application processing time. Network security poses a significant challenge in the cloud due to the dynamic nature of the topology, hindering traditional firewalls’ ability to inspect packet contents and leaving the network vulnerable to potential threats. To address this, we propose dividing the cloud topology into zones, each monitored by a controller to oversee individual VMs under firewall protection, a framework termed divided-cloud, aiming to minimize network congestion while strategically placing new VMs. Employing machine learning (ML) techniques, such as decision tree (DT) and linear discriminant analysis (LDA), we achieved improved accuracy rates for adding new controllers, reaching a maximum of 89%, and used the K-neighbours classifier method to determine optimal locations for new VMs, achieving an accuracy of 83%.
通过机器学习自动分配云虚拟机
在利用云技术的医疗保健应用领域,取得的进展是显而易见的,但目前的方法比较僵化,无法适应动态环境,特别是当网络和虚拟机(VM)资源在执行过程中发生修改时。健康数据作为由众多虚拟机支持的虚拟资源在云中存储和处理,因此有必要对虚拟节点和数据位置进行关键优化,以延长数据应用的处理时间。由于拓扑结构的动态性,网络安全在云中构成了巨大挑战,阻碍了传统防火墙检查数据包内容的能力,使网络容易受到潜在威胁。为解决这一问题,我们建议将云拓扑结构划分为若干区域,每个区域由一个控制器监控,以监督受防火墙保护的单个虚拟机,这一框架被称为 "分割云"(divided-cloud),旨在最大限度地减少网络拥塞,同时战略性地放置新的虚拟机。利用机器学习(ML)技术,如决策树(DT)和线性判别分析(LDA),我们提高了添加新控制器的准确率,最高达到 89%,并使用 K-neighbours 分类器方法确定新虚拟机的最佳位置,准确率达到 83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
782
期刊介绍: The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信