F. Kamoun-Abid, Hounaida Frikha, Amel Meddeb-Makhoulf, F. Zarai
{"title":"Automating cloud virtual machines allocation via machine learning","authors":"F. Kamoun-Abid, Hounaida Frikha, Amel Meddeb-Makhoulf, F. Zarai","doi":"10.11591/ijeecs.v35.i1.pp191-202","DOIUrl":null,"url":null,"abstract":"In the realm of healthcare applications leveraging cloud technology, ongoing progress is evident, yet current approaches are rigid and fail to adapt to the dynamic environment, particularly when network and virtual machine (VM) resources undergo modifications mid-execution. Health data is stored and processed in the cloud as virtual resources supported by numerous VMs, necessitating critical optimization of virtual node and data placement to enhance data application processing time. Network security poses a significant challenge in the cloud due to the dynamic nature of the topology, hindering traditional firewalls’ ability to inspect packet contents and leaving the network vulnerable to potential threats. To address this, we propose dividing the cloud topology into zones, each monitored by a controller to oversee individual VMs under firewall protection, a framework termed divided-cloud, aiming to minimize network congestion while strategically placing new VMs. Employing machine learning (ML) techniques, such as decision tree (DT) and linear discriminant analysis (LDA), we achieved improved accuracy rates for adding new controllers, reaching a maximum of 89%, and used the K-neighbours classifier method to determine optimal locations for new VMs, achieving an accuracy of 83%.","PeriodicalId":13480,"journal":{"name":"Indonesian Journal of Electrical Engineering and Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijeecs.v35.i1.pp191-202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
In the realm of healthcare applications leveraging cloud technology, ongoing progress is evident, yet current approaches are rigid and fail to adapt to the dynamic environment, particularly when network and virtual machine (VM) resources undergo modifications mid-execution. Health data is stored and processed in the cloud as virtual resources supported by numerous VMs, necessitating critical optimization of virtual node and data placement to enhance data application processing time. Network security poses a significant challenge in the cloud due to the dynamic nature of the topology, hindering traditional firewalls’ ability to inspect packet contents and leaving the network vulnerable to potential threats. To address this, we propose dividing the cloud topology into zones, each monitored by a controller to oversee individual VMs under firewall protection, a framework termed divided-cloud, aiming to minimize network congestion while strategically placing new VMs. Employing machine learning (ML) techniques, such as decision tree (DT) and linear discriminant analysis (LDA), we achieved improved accuracy rates for adding new controllers, reaching a maximum of 89%, and used the K-neighbours classifier method to determine optimal locations for new VMs, achieving an accuracy of 83%.
期刊介绍:
The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]