A novel ensemble deep network framework for scene text recognition

Sunil Kumar Dasari, S. Mehta, D. Steffi
{"title":"A novel ensemble deep network framework for scene text recognition","authors":"Sunil Kumar Dasari, S. Mehta, D. Steffi","doi":"10.11591/ijres.v13.i2.pp403-413","DOIUrl":null,"url":null,"abstract":"In recent years, scene text recognition (STR) has always been considered a sequence-to-sequence problem. Attention-based techniques have a greater potential for context-semantic modelling, but they tend to overfit inadequate training data. STR is one of the most important and difficult challenges in image-based sequence recognition. A novel framework ensemble deep network (EDN) is proposed, EDN comprises customized convolutional neural network (CNN), and deep autoencoder. Customized CNN is designed by introducing the optimal spatial transformation module for optimizing the input of irregular text to read for same size. Further, deep autoencoder is introduced with effective attention mechanism utilizing the inherent features. The proposed ensemble deep network-proposed system (EDN-PS) approach outperforms the existing state-of-art techniques for both irregular and regular scene-texts and upon further simulations, the proposed model generates better results for IIIT5K, ICDAR-13, ICDAR-15, and CUTE dataset in comparison with the existing system hence our proposed EDN-PS model outperforms the existing state-of-art methods.","PeriodicalId":158991,"journal":{"name":"International Journal of Reconfigurable and Embedded Systems (IJRES)","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reconfigurable and Embedded Systems (IJRES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijres.v13.i2.pp403-413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, scene text recognition (STR) has always been considered a sequence-to-sequence problem. Attention-based techniques have a greater potential for context-semantic modelling, but they tend to overfit inadequate training data. STR is one of the most important and difficult challenges in image-based sequence recognition. A novel framework ensemble deep network (EDN) is proposed, EDN comprises customized convolutional neural network (CNN), and deep autoencoder. Customized CNN is designed by introducing the optimal spatial transformation module for optimizing the input of irregular text to read for same size. Further, deep autoencoder is introduced with effective attention mechanism utilizing the inherent features. The proposed ensemble deep network-proposed system (EDN-PS) approach outperforms the existing state-of-art techniques for both irregular and regular scene-texts and upon further simulations, the proposed model generates better results for IIIT5K, ICDAR-13, ICDAR-15, and CUTE dataset in comparison with the existing system hence our proposed EDN-PS model outperforms the existing state-of-art methods.
用于场景文本识别的新型集合深度网络框架
近年来,场景文本识别(STR)一直被认为是一个从序列到序列的问题。基于注意力的技术在语境语义建模方面具有更大的潜力,但它们往往会过度拟合不充分的训练数据。STR 是基于图像的序列识别中最重要、最困难的挑战之一。本文提出了一种新颖的集合深度网络(EDN)框架,EDN 由定制卷积神经网络(CNN)和深度自动编码器组成。定制卷积神经网络的设计引入了最优空间变换模块,以优化输入的不规则文本在相同大小下的读取。此外,深度自动编码器还引入了利用固有特征的有效关注机制。在不规则和规则场景文本方面,所提议的集合深度网络-提议系统(EDN-PS)方法优于现有的先进技术,在进一步模拟后,与现有系统相比,提议的模型在 IIIT5K、ICDAR-13、ICDAR-15 和 CUTE 数据集上产生了更好的结果,因此我们提议的 EDN-PS 模型优于现有的先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信