Stall Inception Control by Setting Groove Based on Its Formation Mechanism in Centrifugal Impeller

IF 1.1 4区 工程技术 Q4 MECHANICS
X. D. Liu, X. B. Huang, Y. J. Li, Z. Liu, W. Yang
{"title":"Stall Inception Control by Setting Groove Based on Its Formation Mechanism in Centrifugal Impeller","authors":"X. D. Liu, X. B. Huang, Y. J. Li, Z. Liu, W. Yang","doi":"10.47176/jafm.17.7.2421","DOIUrl":null,"url":null,"abstract":"Stall, a complex flow phenomenon in centrifugal pump, plays a crucial role in pump safety and stability under part-load conditions. In this paper, a verified numerical simulation method is employed to analyze the three-dimensional flow field under the stall inception conditions. The results reveal the initial stall vortex occurs near the Q=0.7Qd condition in the prototype impeller. Based on stall formation mechanism, the high-velocity fluid near the blade pressure side is sucked into suction side of next impeller channel by setting a groove near the blade leading edge. This jet flow can prevent the narrow vortices near the impeller shroud from moving towards the blade suction side, thereby suppressing the formation of stall vortex. By comparing the effects of different groove locations, directions, and sizes on stall vortex control, the optimal groove width is determined to be approximately 1mm. Compared with the prototype impeller, the grooved impeller can completely eliminate the stall vortex and significantly reduce pressure pulsation under part-load conditions. Moreover, the head of grooved impeller is increased by nearly 15% under Q=0.6Qd condition, and the potential suppression mechanism","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.7.2421","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Stall, a complex flow phenomenon in centrifugal pump, plays a crucial role in pump safety and stability under part-load conditions. In this paper, a verified numerical simulation method is employed to analyze the three-dimensional flow field under the stall inception conditions. The results reveal the initial stall vortex occurs near the Q=0.7Qd condition in the prototype impeller. Based on stall formation mechanism, the high-velocity fluid near the blade pressure side is sucked into suction side of next impeller channel by setting a groove near the blade leading edge. This jet flow can prevent the narrow vortices near the impeller shroud from moving towards the blade suction side, thereby suppressing the formation of stall vortex. By comparing the effects of different groove locations, directions, and sizes on stall vortex control, the optimal groove width is determined to be approximately 1mm. Compared with the prototype impeller, the grooved impeller can completely eliminate the stall vortex and significantly reduce pressure pulsation under part-load conditions. Moreover, the head of grooved impeller is increased by nearly 15% under Q=0.6Qd condition, and the potential suppression mechanism
根据离心叶轮的形成机理设置沟槽以控制滞流的发生
失速是离心泵中的一种复杂流动现象,对泵在部分负荷条件下的安全性和稳定性起着至关重要的作用。本文采用了一种经过验证的数值模拟方法来分析失速起始条件下的三维流场。结果表明,原型叶轮在 Q=0.7Qd 条件附近出现了初始失速漩涡。根据失速形成机理,通过在叶片前缘附近设置凹槽,将叶片压力侧附近的高速流体吸入下一个叶轮通道的吸入侧。这种喷射流可以阻止叶轮护罩附近的狭窄涡流向叶片吸入侧移动,从而抑制失速涡流的形成。通过比较不同沟槽位置、方向和尺寸对失速涡流控制的影响,确定最佳沟槽宽度约为 1 毫米。与原型叶轮相比,开槽叶轮可以完全消除滞流涡旋,并显著降低部分负荷条件下的压力脉动。此外,在 Q=0.6Qd 条件下,开槽叶轮的扬程提高了近 15%,其电势抑制机制也得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信