{"title":"On superlevel sets of conditional densities and multivariate quantile regression","authors":"Annika Camehl, Dennis Fok, Kathrin Gruber","doi":"10.1016/j.jeconom.2024.105807","DOIUrl":null,"url":null,"abstract":"<div><div>Some common proposals of multivariate quantiles do not sufficiently control the probability content, while others do not always accurately reflect the concentration of probability mass. We suggest superlevel sets of conditional multivariate densities as an alternative to current multivariate quantile definitions. Hence, the superlevel set is a function of conditioning variables much like in quantile regression. We show that conditional superlevel sets have favorable mathematical and intuitive features, and support a clear probabilistic interpretation. We derive the superlevel sets for a conditional or marginal density of interest from an (overfitted) multivariate Gaussian mixture model. This approach guarantees logically consistent (i.e., non-crossing) conditional superlevel sets and also allows us to obtain more traditional univariate quantiles. We demonstrate recovery of the true conditional univariate quantiles for distributions with correlation, heteroskedasticity, or asymmetry and apply our method in univariate and multivariate settings to a study on household expenditures.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"249 ","pages":"Article 105807"},"PeriodicalIF":9.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624001532","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Some common proposals of multivariate quantiles do not sufficiently control the probability content, while others do not always accurately reflect the concentration of probability mass. We suggest superlevel sets of conditional multivariate densities as an alternative to current multivariate quantile definitions. Hence, the superlevel set is a function of conditioning variables much like in quantile regression. We show that conditional superlevel sets have favorable mathematical and intuitive features, and support a clear probabilistic interpretation. We derive the superlevel sets for a conditional or marginal density of interest from an (overfitted) multivariate Gaussian mixture model. This approach guarantees logically consistent (i.e., non-crossing) conditional superlevel sets and also allows us to obtain more traditional univariate quantiles. We demonstrate recovery of the true conditional univariate quantiles for distributions with correlation, heteroskedasticity, or asymmetry and apply our method in univariate and multivariate settings to a study on household expenditures.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.