A Comparative Study of Cat Swarm Algorithm for Graph Coloring Problem: Convergence Analysis and Performance Evaluation

Ayesha Saeed, Ali Husnain, Anam Zahoor, Mehmood Gondal
{"title":"A Comparative Study of Cat Swarm Algorithm for Graph Coloring Problem: Convergence Analysis and Performance Evaluation","authors":"Ayesha Saeed, Ali Husnain, Anam Zahoor, Mehmood Gondal","doi":"10.55524/ijircst.2024.12.4.1","DOIUrl":null,"url":null,"abstract":"The Graph Coloring Problem (GCP) is a significant optimization challenge widely suitable to solve scheduling problems. Its goal is to specify the minimum colors (k) required to color a graph properly. Due to its NP-completeness, exact algorithms become impractical for graphs exceeding 100 vertices. As a result, approximation algorithms have gained prominence for tackling large-scale instances. In this context, the Cat Swarm algorithm, a novel population-based metaheuristic in the domain of swarm intelligence, has demonstrated promising convergence properties compared to other population-based algorithms. This research focuses on designing and implementing the Cat Swarm algorithm to address the GCP. By conducting a comparative study with established algorithms, our investigation revolves around quantifying the minimum value of k required by the Cat Swarm algorithm for each graph instance. The evaluation metrics include the algorithm's running time in seconds, success rate, and the mean count of iterations or assessments required to reach a goal.","PeriodicalId":218345,"journal":{"name":"International Journal of Innovative Research in Computer Science and Technology","volume":"10 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Research in Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55524/ijircst.2024.12.4.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Graph Coloring Problem (GCP) is a significant optimization challenge widely suitable to solve scheduling problems. Its goal is to specify the minimum colors (k) required to color a graph properly. Due to its NP-completeness, exact algorithms become impractical for graphs exceeding 100 vertices. As a result, approximation algorithms have gained prominence for tackling large-scale instances. In this context, the Cat Swarm algorithm, a novel population-based metaheuristic in the domain of swarm intelligence, has demonstrated promising convergence properties compared to other population-based algorithms. This research focuses on designing and implementing the Cat Swarm algorithm to address the GCP. By conducting a comparative study with established algorithms, our investigation revolves around quantifying the minimum value of k required by the Cat Swarm algorithm for each graph instance. The evaluation metrics include the algorithm's running time in seconds, success rate, and the mean count of iterations or assessments required to reach a goal.
图形着色问题的猫群算法比较研究:收敛性分析与性能评估
图形着色问题(GCP)是一项重要的优化挑战,广泛适用于解决调度问题。它的目标是指定给图形正确着色所需的最小颜色 (k)。由于其 NP 的完备性,对于超过 100 个顶点的图形,精确算法变得不切实际。因此,近似算法在处理大规模实例时变得越来越重要。在这种情况下,猫群算法(Cat Swarm algorithm)作为群智能领域的一种新型基于种群的元启发式算法,与其他基于种群的算法相比,表现出了良好的收敛特性。本研究的重点是设计和实施猫群算法,以解决 GCP 问题。通过与已有算法进行比较研究,我们的调查围绕量化猫群算法对每个图实例所需的最小 k 值展开。评估指标包括以秒为单位的算法运行时间、成功率以及达到目标所需的平均迭代次数或评估次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信