Yingqi Zhang, Yiwen Han, Na Wen, Junyu Qi, Xiaoyu Zhang, Gary W. Marek, Raghavan Srinivasan, Puyu Feng, De Li Liu, Kelin Hu, Yong Chen
{"title":"Assessing the Response Mechanisms of Elevated CO2 Concentration on Various Forms of Nitrogen Losses in the Golden Corn Belt","authors":"Yingqi Zhang, Yiwen Han, Na Wen, Junyu Qi, Xiaoyu Zhang, Gary W. Marek, Raghavan Srinivasan, Puyu Feng, De Li Liu, Kelin Hu, Yong Chen","doi":"10.1029/2024wr037226","DOIUrl":null,"url":null,"abstract":"Nitrogen (N) loss is a significant source of water quality pollution in alluvial watersheds. However, the mechanisms linking N loss and elevated CO2 concentration (eCO2) are not well recognized. In this study, we comprehensively calibrated the SWAT model equipped with a dynamic CO2 input and response module to investigate the response mechanisms between multiform N losses and eCO2 in a representative large‐scale watershed. Results revealed nitrate loss under eCO2 exceeding 100% in some upstream zones under the SSP5‐8.5 scenario (P < 0.05) compared to the constant CO2 concentration. This was directly related to the great increase in hydrological variables, which were the carriers of N losses, and the intensive inputs of N fertilizer. Results also found that nitrate leaching was greater than the other two processes for future periods, peaking at 309.3%, as compared to the baseline period. The findings suggested reducing fertilizer inputs by 10%–20% was promising, especially for reducing nitrate loss through runoff and leaching by up to 17.7% and 12.2%. This study explored the mechanisms of increased N loss in response to eCO2 and provided scientific evidence for early warning and making decisions to improve water quality at a large watershed scale.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr037226","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen (N) loss is a significant source of water quality pollution in alluvial watersheds. However, the mechanisms linking N loss and elevated CO2 concentration (eCO2) are not well recognized. In this study, we comprehensively calibrated the SWAT model equipped with a dynamic CO2 input and response module to investigate the response mechanisms between multiform N losses and eCO2 in a representative large‐scale watershed. Results revealed nitrate loss under eCO2 exceeding 100% in some upstream zones under the SSP5‐8.5 scenario (P < 0.05) compared to the constant CO2 concentration. This was directly related to the great increase in hydrological variables, which were the carriers of N losses, and the intensive inputs of N fertilizer. Results also found that nitrate leaching was greater than the other two processes for future periods, peaking at 309.3%, as compared to the baseline period. The findings suggested reducing fertilizer inputs by 10%–20% was promising, especially for reducing nitrate loss through runoff and leaching by up to 17.7% and 12.2%. This study explored the mechanisms of increased N loss in response to eCO2 and provided scientific evidence for early warning and making decisions to improve water quality at a large watershed scale.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.