Andrea Montalti, Patrich Ferretti, Gian Maria Santi
{"title":"A Cost-effective approach for quality control in PLA-based material extrusion 3D printing using 3D scanning","authors":"Andrea Montalti, Patrich Ferretti, Gian Maria Santi","doi":"10.1016/j.jii.2024.100660","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, our aim is to underscore the importance of verifying that components produced through material extrusion additive manufacturing exhibit geometric and dimensional conformity with the STL (Standard Tessellation Language) model. Currently, the business world is heavily investing in additive technologies, but it is crucial to obtain feedback on the accuracy of the printed component without excessive economic expenditure. For this reason, we have opted to utilize a mid-range 3D scanner (Revopoint Mini with an accuracy of 0.02 mm) to investigate any disparities in print results using PLA material. Each model has been scanned and compared with the initial mesh to qualitatively and quantitatively assess the present errors. The analysis has revealed that the majority of features can be effectively controlled, while the remaining ones either fall within the tool's precision or necessitate a higher-quality scan. Particularly in the analysed case, flat surfaces, profiles of complex geometries, and holes have demonstrated dimensional and geometric controllability. However, details of reduced dimensions or those difficult to reach by the scanner do not allow for adequate comparison due to excessive standard deviation in the error. The analysed layer heights do not exhibit a significant impact on component accuracy.</p></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"41 ","pages":"Article 100660"},"PeriodicalIF":10.4000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452414X24001043/pdfft?md5=756cdcd5a4e6ebe2047139e04b1b1f85&pid=1-s2.0-S2452414X24001043-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X24001043","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, our aim is to underscore the importance of verifying that components produced through material extrusion additive manufacturing exhibit geometric and dimensional conformity with the STL (Standard Tessellation Language) model. Currently, the business world is heavily investing in additive technologies, but it is crucial to obtain feedback on the accuracy of the printed component without excessive economic expenditure. For this reason, we have opted to utilize a mid-range 3D scanner (Revopoint Mini with an accuracy of 0.02 mm) to investigate any disparities in print results using PLA material. Each model has been scanned and compared with the initial mesh to qualitatively and quantitatively assess the present errors. The analysis has revealed that the majority of features can be effectively controlled, while the remaining ones either fall within the tool's precision or necessitate a higher-quality scan. Particularly in the analysed case, flat surfaces, profiles of complex geometries, and holes have demonstrated dimensional and geometric controllability. However, details of reduced dimensions or those difficult to reach by the scanner do not allow for adequate comparison due to excessive standard deviation in the error. The analysed layer heights do not exhibit a significant impact on component accuracy.
期刊介绍:
The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers.
The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.