AUTOMATION OF TEXT DATA PROCESSING USING NLP

Yaroslav Starukhin, Vladimir Diukarev
{"title":"AUTOMATION OF TEXT DATA PROCESSING USING NLP","authors":"Yaroslav Starukhin, Vladimir Diukarev","doi":"10.37547/tajet/volume06issue07-04","DOIUrl":null,"url":null,"abstract":"This study aims to develop an automated system for processing scientific texts using advanced NLP techniques. The methodology integrates classical NLP methods with deep learning approaches, employing SciBERT for text classification, LDA for topic modeling, and a modified TextRank algorithm for keyword extraction. Results demonstrate high accuracy in document classification (F1-score of 0.92), effective topic identification, and precise keyword extraction. The developed web interface showcases the system's practical applicability. This research contributes to the field by presenting a comprehensive solution for scientific text analysis, combining state-of-the-art language models with established NLP techniques. The study's novelty lies in its tailored approach to scientific literature, addressing the unique challenges of domain-specific language and complex content structure in academic texts.","PeriodicalId":515824,"journal":{"name":"The American Journal of Engineering and Technology","volume":"85 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37547/tajet/volume06issue07-04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to develop an automated system for processing scientific texts using advanced NLP techniques. The methodology integrates classical NLP methods with deep learning approaches, employing SciBERT for text classification, LDA for topic modeling, and a modified TextRank algorithm for keyword extraction. Results demonstrate high accuracy in document classification (F1-score of 0.92), effective topic identification, and precise keyword extraction. The developed web interface showcases the system's practical applicability. This research contributes to the field by presenting a comprehensive solution for scientific text analysis, combining state-of-the-art language models with established NLP techniques. The study's novelty lies in its tailored approach to scientific literature, addressing the unique challenges of domain-specific language and complex content structure in academic texts.
利用 NLP 实现文本数据处理自动化
本研究旨在利用先进的 NLP 技术开发一个处理科学文本的自动化系统。该方法将经典的 NLP 方法与深度学习方法相结合,使用 SciBERT 进行文本分类,使用 LDA 进行主题建模,并使用改进的 TextRank 算法进行关键词提取。结果表明,该系统在文档分类(F1 分数为 0.92)、有效的主题识别和精确的关键词提取方面具有很高的准确性。开发的网络界面展示了该系统的实用性。这项研究将最先进的语言模型与成熟的 NLP 技术相结合,为科学文本分析提供了一个全面的解决方案,从而为该领域做出了贡献。这项研究的新颖之处在于它为科学文献量身定制了方法,解决了学术文本中特定领域语言和复杂内容结构所带来的独特挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信